G. Amorino and M. Fox, Intracellular Na+ measurements using sodium green tetraacetate with flow cytometry, Cytometry, vol.254, issue.3, pp.248-256, 1995.
DOI : 10.1002/cyto.990210305

C. Armstrong, Sodium channels and gating currents, Physiol Rev, vol.61, pp.644-683, 1981.

A. Baquero and T. Gilbertson, Insulin activates epithelial sodium channel (ENaC) via phosphoinositide 3-kinase in mammalian taste receptor cells, AJP: Cell Physiology, vol.300, issue.4, pp.860-871, 2010.
DOI : 10.1152/ajpcell.00318.2010

I. Barshack, M. Levite, A. Lang, E. Fudim, O. Picard et al., Functional Voltage-Gated Sodium Channels Are Expressed in Human Intestinal Epithelial Cells, Digestion, vol.77, issue.2, pp.108-117, 2008.
DOI : 10.1159/000123840

P. Besson, V. Driffort, E. Bon, F. Gradek, C. S. Roger et al., How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells?, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1848, issue.10, pp.2493-2501, 2015.
DOI : 10.1016/j.bbamem.2015.04.013

D. Chen, M. Song, O. Mohamad, and S. Yu, Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells, BMC Cancer, vol.11, issue.1???2, pp.716-726, 2014.
DOI : 10.1016/j.drup.2007.11.003

H. Denac, M. Mevissen, and G. Scholtysik, Structure, function and pharmacology of voltage-gated sodium channels, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.362, issue.6, pp.453-479, 2000.
DOI : 10.1007/s002100000319

A. Diarra, C. Sheldon, and J. Church, In situ calibration and [H + ] sensitivity of the fluorescent Na + indicator SBFI, Am J Physiol Cell Physiol, vol.280, pp.1623-1633, 2001.

H. Dlouha, J. Teisinger, and F. Vyskocil, Activation of membrane Na+/K+-ATPase of mouse skeletal muscle by acetylcholine and its inhibition by ??-bungarotoxin, curare and atropine, Pfl??gers Archiv European Journal of Physiology, vol.176, issue.1, pp.101-104, 1979.
DOI : 10.1007/BF00582620

K. Farrag, A. Bhattacharjee, and R. Docherty, A comparison of the effects of veratridine on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in isolated rat dorsal root ganglion neurons, Pfl??gers Archiv - European Journal of Physiology, vol.137, issue.5, pp.929-938, 2008.
DOI : 10.1007/s00424-007-0365-5

S. Fraser, J. Grimes, and M. Djamgoz, Effects of voltage-gated ion channel modulators on rat prostatic cancer cell proliferation: Comparison of strongly and weakly metastatic cell lines, The Prostate, vol.137, issue.1, pp.61-76, 2000.
DOI : 10.1002/1097-0045(20000615)44:1<61::AID-PROS9>3.0.CO;2-3

S. Fraser, Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. lateral motility, Journal of Cellular Physiology, vol.8, issue.3, pp.479-487, 2003.
DOI : 10.1002/jcp.10312

S. Fraser, I. Ozerlat-gunduz, W. Brackenbury, E. Fitzgerald, T. Campbell et al., Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.80, issue.5, 2014.
DOI : 10.1016/j.biocel.2008.11.001

N. Gao, Voltage-gated sodium channels in taste bud cells, BMC Neuroscience, vol.10, issue.1, 2009.
DOI : 10.1186/1471-2202-10-20

L. Gillet, Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells, Journal of Biological Chemistry, vol.284, issue.13, pp.8680-8691, 2009.
DOI : 10.1074/jbc.M806891200

G. Grynkiewicz, M. Poenie, and R. Tsien, A new generation of Ca2 + indicators with greatly improved fluorescence properties, J Biol Chem, vol.260, pp.3440-3450, 1985.

L. Hansen, J. Rasmussen, E. Friche, and J. Jaroszewski, Method for Determination of Intracellular Sodium in Perfused Cancer Cells by 23Na Nuclear Magnetic Resonance Spectroscopy, Analytical Biochemistry, vol.214, issue.2, pp.506-510, 1993.
DOI : 10.1006/abio.1993.1530

M. Jacobs, Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer, Breast Cancer Research and Treatment, vol.30, issue.5, pp.119-126, 2011.
DOI : 10.1007/s10549-011-1442-1

M. Kaighn, K. Narayan, Y. Ohnuki, J. Lechner, and L. Jones, Establishment and characterization of a human prostatic carcinoma cell line (PC-3), Invest Urol, vol.17, pp.16-23, 1979.

M. Kim, C. Lim, J. Hong, J. Han, H. Jang et al., Sodium-Ion-Selective Two-Photon Fluorescent Probe for In Vivo Imaging, Angewandte Chemie International Edition, vol.101, issue.2, pp.364-367, 2010.
DOI : 10.1002/anie.200904835

R. Kline, Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging, Clin Cancer Res, vol.6, pp.2146-2156, 2000.

P. Komlosi, A. Fuson, A. Fintha, J. Peti-peterdi, L. Rosivall et al., Angiotensin I Conversion to Angiotensin II Stimulates Cortical Collecting Duct Sodium Transport, Hypertension, vol.42, issue.2, pp.195-199, 2003.
DOI : 10.1161/01.HYP.0000081221.36703.01

J. Kozlowski, I. Fidler, D. Campbell, Z. Xu, M. Kaighn et al., Metastatic behavior of human tumor cell lines grown in the nude mouse, Cancer Res, vol.44, pp.3522-3529, 1984.

M. Lahn, C. Dosche, and C. Hille, Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl- changes in cockroach salivary acinar cells, AJP: Cell Physiology, vol.300, issue.6, pp.1323-1336, 2010.
DOI : 10.1152/ajpcell.00320.2010

C. Lamy and J. Chatton, Optical probing of sodium dynamics in neurons and astrocytes, NeuroImage, vol.58, issue.2, pp.572-578, 2011.
DOI : 10.1016/j.neuroimage.2011.06.074

C. Lamy, O. Sallin, C. Loussert, and J. Chatton, Sodium Sensing in Neurons with a Dendrimer-Based Nanoprobe, ACS Nano, vol.6, issue.2, pp.1176-1187, 2012.
DOI : 10.1021/nn203822t

V. Martin, A. Rothe, and K. Gee, Fluorescent metal ion indicators based on benzoannelated crown systems: a green fluorescent indicator for intracellular sodium ions, Bioorganic & Medicinal Chemistry Letters, vol.15, issue.7, pp.1851-1855, 2005.
DOI : 10.1016/j.bmcl.2005.02.017

S. Meier, Y. Kovalchuk, and C. Rose, Properties of the new fluorescent Na+ indicator CoroNa Green: Comparison with SBFI and confocal Na+ imaging, Journal of Neuroscience Methods, vol.155, issue.2, pp.251-259, 2006.
DOI : 10.1016/j.jneumeth.2006.01.009

T. Mijatovic, L. Ingrassia, V. Facchini, R. Kiss, and +. Na, -ATPase ?? subunits as new targets in anticancer therapy, Expert Opinion on Therapeutic Targets, vol.26, issue.11, pp.1403-1417, 2008.
DOI : 10.1016/S0006-291X(03)00922-7

URL : https://hal.archives-ouvertes.fr/in2p3-01334106

A. Minta and R. Tsien, Fluorescent indicators for cytosolic sodium, J Biol Chem, vol.264, pp.19449-19457, 1989.

K. Miyazaki and W. Ross, Simultaneous Sodium and Calcium Imaging from Dendrites and Axons, eNeuro, vol.2, issue.5, pp.92-107, 2015.
DOI : 10.1523/ENEURO.0092-15.2015

D. Moskowitz and K. Hruska, Ca2+ uptake by endoplasmic reticulum of renal cortex. I. Ionic requirements and regulation in vitro, Calcified Tissue International, vol.10, issue.1, pp.35-41, 1992.
DOI : 10.1007/BF00296215

T. Nakajima, Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells, British Journal of Pharmacology, vol.98, issue.2, pp.420-431, 2009.
DOI : 10.1111/j.1476-5381.2008.00059.x

T. Nilsson, P. Arkhammar, A. Hallberg, B. Hellman, and P. Berggren, -cells, Biochemical Journal, vol.248, issue.2, pp.329-336, 1987.
DOI : 10.1042/bj2480329

URL : https://hal.archives-ouvertes.fr/in2p3-00002960

R. Ouwerkerk, K. Bleich, J. Gillen, M. Pomper, and P. Bottomley, Na MR Imaging, Radiology, vol.227, issue.2, pp.529-537, 2003.
DOI : 10.1148/radiol.2272020483

R. Ouwerkerk, Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI, Breast Cancer Research and Treatment, vol.3, issue.6, pp.151-160, 2007.
DOI : 10.1007/s10549-006-9485-4

A. Pajor and E. Wright, Cloning and functional expression of a mammalian Na + /nucleoside cotransporter a member of the SGLT family, J Biol Chem, vol.267, pp.3557-3560, 1992.

L. Parent, S. Supplisson, D. Loo, and E. Wright, Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies, The Journal of Membrane Biology, vol.125, issue.1, pp.49-62, 1992.
DOI : 10.1007/BF00235797

F. Patel and W. Brackenbury, Dual roles of voltage-gated sodium channels in development and cancer, The International Journal of Developmental Biology, vol.59, issue.7-8-9, pp.357-366, 2015.
DOI : 10.1387/ijdb.150171wb

P. Quinton and J. Tormey, Localization of Na/K-ATPase sites in the secretory and reabsorptive epithelia of perfused eccrine sweat glands: A question to the role of the enzyme in secretion, The Journal of Membrane Biology, vol.361, issue.3, pp.383-399, 1976.
DOI : 10.1007/BF01868972

J. Robinson, Mechanisms by which Li+ stimulates the (Na++K+)-dependent ATPase, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.413, issue.3, pp.459-471, 1975.
DOI : 10.1016/0005-2736(75)90129-7

D. Roden, A. George, and . Jr, Structure and function of cardiac sodium and potassium channels, Am J Physiol, vol.273, pp.511-525, 1997.

P. Roder and C. Hille, determination in living cells by time-resolved fluorescence microscopy, Photochem. Photobiol. Sci., vol.267, issue.12, pp.1699-1710, 2014.
DOI : 10.1039/C4PP00061G

S. Roger, Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines, The International Journal of Biochemistry & Cell Biology, vol.39, issue.4, pp.774-786, 2007.
DOI : 10.1016/j.biocel.2006.12.007

URL : https://hal.archives-ouvertes.fr/inserm-00141870

S. Roger, L. Gillet, L. Guennec, J. Besson, and P. , Voltage-gated sodium channels and cancer: is excitability their primary role?, Frontiers in Pharmacology, vol.139, issue.185, 2015.
DOI : 10.1016/j.pain.2008.03.016

G. Romey and M. Lazdunski, Lipid-soluble toxins thought to be specific for Na+ channels block Ca2+ channels in neuronal cells, Nature, vol.71, issue.5861, pp.79-80, 1982.
DOI : 10.1038/297079a0

C. Rose, Two-Photon Sodium Imaging in Dendritic Spines, Cold Spring Harbor Protocols, vol.2012, issue.11, pp.1161-1165, 2012.
DOI : 10.1101/pdb.prot072074

B. Shan, Voltage???gated sodium channels were differentially expressed in human normal prostate, benign prostatic hyperplasia and prostate cancer cells, Oncology Letters, vol.8, 2014.
DOI : 10.3892/ol.2014.2110

K. Stone, D. Mickey, H. Wunderli, G. Mickey, and D. Paulson, Isolation of a human prostate carcinoma cell line (DU 145), International Journal of Cancer, vol.10, issue.3, pp.274-281, 1978.
DOI : 10.1002/ijc.2910210305

S. Suy, Expression of Voltage-Gated Sodium Channel Nav1.8 in Human Prostate Cancer is Associated with High Histological Grade, Journal of Clinical & Experimental Oncology, vol.01, issue.02, 2012.
DOI : 10.4172/2324-9110.1000102

B. Tannous, Mutant Sodium Channel for Tumor Therapy, Molecular Therapy, vol.17, issue.5, pp.810-819, 2009.
DOI : 10.1038/mt.2009.33

J. Verheugen, M. Oortgiesen, and H. Vijverberg, Veratridine blocks voltage-gated potassium current in human T lymphocytes and in mouse neuroblastoma cells, J Membr Biol, vol.137, pp.205-214, 1994.

H. Weidemann, Na/K-ATPase, endogenous digitalis-like compounds and cancer development - A hypothesis, Frontiers in Bioscience, vol.10, issue.1-3, pp.2165-2176, 2005.
DOI : 10.2741/1688

E. Wright, K. Hager, and E. Turk, Sodium cotransport proteins, Current Opinion in Cell Biology, vol.4, issue.4, pp.696-702, 1992.
DOI : 10.1016/0955-0674(92)90091-P