J. L. Teillaud, Engineering of monoclonal antibodies and antibody-based fusion proteins: successes and challenges, Expert Opinion on Biological Therapy, vol.5, issue.sup1, pp.15-27, 2005.
DOI : 10.1073/pnas.96.5.1898

P. Holliger and P. J. Hudson, Engineered antibody fragments and the rise of single domains, Nature Biotechnology, vol.10, issue.9, pp.1126-1136, 2005.
DOI : 10.1182/blood-2005-03-1153

J. D. Unciti-broceta, T. D. Castillo, M. Soriano, S. Magez, and J. A. Garcia-salcedo, Novel therapy based on camelid nanobodies, Therapeutic Delivery, vol.4, issue.10, pp.4-2013
DOI : 10.4155/tde.13.87

J. B. Evans and B. A. Syed, Next-generation antibodies, Nature Reviews Drug Discovery, vol.13, issue.6, pp.413-414, 2014.
DOI : 10.4161/mabs.22976

C. Su, V. K. Nguyen, and M. Nei, Adaptive Evolution of Variable Region Genes Encoding an Unusual Type of Immunoglobulin in Camelids, Molecular Biology and Evolution, vol.19, issue.3, pp.205-215, 2002.
DOI : 10.1093/oxfordjournals.molbev.a004073

S. W. Fanning and J. R. Horn, An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop, Protein Science, vol.60, issue.7, pp.1196-1207, 2011.
DOI : 10.1002/pro.648

S. Khamrui, S. Turley, E. Pardon, J. Steyaert, E. Fan et al., The structure of the D3 domain of Plasmodium falciparum myosin tail interacting protein MTIP in complex with a nanobody, Molecular and Biochemical Parasitology, vol.190, issue.2, pp.190-87, 2013.
DOI : 10.1016/j.molbiopara.2013.06.003

S. Gu, S. Rumpel, J. Zhou, J. Strotmeier, H. Bigalke et al., Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex, Science, vol.335, issue.6071, pp.335-977, 2012.
DOI : 10.1126/science.1214270

D. W. Banner, B. Gsell, J. Benz, J. Bertschinger, D. Burger et al., Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, Fynomers and Xaperones, Acta Crystallographica Section D Biological Crystallography, vol.14, issue.6, pp.69-1124, 2013.
DOI : 10.1107/S0907444913006574/tz5028sup1.pdf

A. Y. Lam, E. Pardon, K. V. Korotkov, W. G. Hol, and J. Steyaert, Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus, Journal of Structural Biology, vol.166, issue.1, pp.166-174, 2009.
DOI : 10.1016/j.jsb.2008.11.008

A. Desmyter, S. Spinelli, F. Payan, M. Lauwereys, L. Wyns et al., Three Camelid VHH Domains in Complex with Porcine Pancreatic alpha -Amylase. INHIBITION AND VERSATILITY OF BINDING TOPOLOGY, Journal of Biological Chemistry, vol.277, issue.26, pp.277-23645, 2002.
DOI : 10.1074/jbc.M202327200

E. J. De-genst, T. Guilliams, J. Wellens, E. M. O-'day, C. A. Waudby et al., Structure and properties of a complex of alpha-synuclein and a single-domain camelid antibody, J Mol Biol, pp.402-326, 2010.

G. Sciara, C. Bebeacua, P. Bron, D. Tremblay, M. Ortiz-lombardia et al., Structure of lactococcal phage p2 baseplate and its mechanism of activation, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.6852-6857, 2010.
DOI : 10.1073/pnas.1000232107

C. Vincke, R. Loris, D. Saerens, S. Martinez-rodriguez, S. Muyldermans et al., General Strategy to Humanize a Camelid Single-domain Antibody and Identification of a Universal Humanized Nanobody Scaffold, Journal of Biological Chemistry, vol.284, issue.5, pp.284-3273, 2009.
DOI : 10.1074/jbc.M806889200

A. Fatima, H. Wang, K. Kang, L. Xia, Y. Wang et al., Development of VHH Antibodies against Dengue Virus Type 2 NS1 and Comparison with Monoclonal Antibodies for Use in Immunological Diagnosis, PLoS ONE, vol.84, issue.9, p.95263, 2014.
DOI : 10.1371/journal.pone.0095263.t002

F. M. Cardoso, L. I. Ibanez, S. Van-den-hoecke, S. De-baets, A. Smet et al., Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge, Journal of Virology, vol.88, issue.15, pp.88-8278, 2014.
DOI : 10.1128/JVI.03178-13

A. Desmyter, C. Farenc, J. Mahony, S. Spinelli, C. Bebeacua et al., Viral infection modulation and neutralization by camelid nanobodies, Proceedings of the National Academy of Sciences, vol.110, issue.15, pp.110-1371, 2013.
DOI : 10.1073/pnas.1301336110

Y. Wang, P. Li, Q. Zhang, X. Hu, and W. Zhang, A toxin-free enzyme-linked immunosorbent assay for the analysis of aflatoxins based on a VHH surrogate standard, Analytical and Bioanalytical Chemistry, vol.61, issue.22, 2016.
DOI : 10.1007/s00216-016-9370-x

P. B. Van-driel, M. C. Boonstra, M. D. Slooter, R. Heukers, M. A. Stammes et al., EGFR targeted nanobody???photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer, Journal of Controlled Release, vol.229, pp.229-93, 2016.
DOI : 10.1016/j.jconrel.2016.03.014

M. Qasemi, M. Behdani, M. A. Shokrgozar, V. Molla-kazemiha, H. Mohseni-kuchesfahani et al., Construction and expression of an anti-VEGFR2 Nanobody-Fc fusionbody in NS0 host cell, Protein Expression and Purification, vol.123, pp.123-142, 2016.
DOI : 10.1016/j.pep.2016.03.004

J. B. Holz, The TITAN trial ??? Assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura, Transfusion and Apheresis Science, vol.46, issue.3, pp.46-343, 2012.
DOI : 10.1016/j.transci.2012.03.027

E. Pardon, T. Laeremans, S. Triest, S. G. Rasmussen, A. Wohlkonig et al., A general protocol for the generation of Nanobodies for structural biology, Nature Protocols, vol.12, issue.3, pp.9-674, 2014.
DOI : 10.1021/ac901651r

A. Desmyter, S. Spinelli, A. Roussel, and C. Cambillau, Camelid nanobodies: killing two birds with one stone, Current Opinion in Structural Biology, vol.32, pp.1-8, 2015.
DOI : 10.1016/j.sbi.2015.01.001

URL : https://hal.archives-ouvertes.fr/hal-01439032

G. Hassaine, C. Deluz, L. Grasso, R. Wyss, M. B. Tol et al., X-ray structure of the mouse serotonin 5-HT3 receptor, Nature, vol.57, issue.7514, pp.512-276, 2014.
DOI : 10.1038/nature13552

URL : https://hal.archives-ouvertes.fr/hal-01102530

A. M. Ring, A. Manglik, A. C. Kruse, M. D. Enos, W. I. Weis et al., Adrenaline-activated structure of beta2-adrenoceptor stabilized by an engineered nanobody, Nature, pp.502-575, 2013.

K. R. Schmitz, A. Bagchi, R. C. Roovers, P. M. Van-bergen-en-henegouwen, and K. M. Ferguson, Structural Evaluation of EGFR Inhibition Mechanisms for Nanobodies/VHH Domains, Structure, vol.21, issue.7, pp.21-1214, 2013.
DOI : 10.1016/j.str.2013.05.008

D. Saerens, F. Frederix, G. Reekmans, K. Conrath, K. Jans et al., Engineering camel single-domain antibodies and immobilization chemistry for human prostatespecific antigen sensing, Anal Chem, pp.77-7547, 2005.

D. Smolarek, C. Hattab, G. Hassanzadeh-ghassabeh, S. Cochet, C. Gutierrez et al., A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines, Cellular and Molecular Life Sciences, vol.5, issue.19, pp.67-3371, 2010.
DOI : 10.1007/s00018-010-0387-6

URL : https://hal.archives-ouvertes.fr/inserm-00512838

D. Smolarek, O. Bertrand, M. Czerwinski, Y. Colin, C. Etchebest et al., Multiple interests in structural models of DARC transmembrane protein, Transfusion Clinique et Biologique, vol.17, issue.3, pp.17-184, 2010.
DOI : 10.1016/j.tracli.2010.05.003

URL : https://hal.archives-ouvertes.fr/inserm-00506537

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Res, pp.28-235, 2000.

F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer, J. et al., The Protein Data Bank: a computer-based archival file for macromolecular structures, J Mol Biol, pp.112-535, 1977.

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.41-271, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

A. P. Joseph, G. Agarwal, S. Mahajan, J. C. Gelly, L. S. Swapna et al., A short survey on protein blocks, Biophysical Reviews, vol.30, issue.3, pp.137-147, 2010.
DOI : 10.1007/s12551-010-0036-1

URL : https://hal.archives-ouvertes.fr/inserm-00512823

V. Jallu, P. Poulain, P. F. Fuchs, C. Kaplan, and A. G. De-brevern, Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit beta3: Structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants, Biochimie, pp.105-84, 2014.

V. Jallu, P. Poulain, P. F. Fuchs, C. Kaplan, and A. G. De-brevern, Modeling and Molecular Dynamics of HPA-1a and -1b Polymorphisms: Effects on the Structure of the ??3 Subunit of the ??IIb??3 Integrin, PLoS ONE, vol.30, issue.11, p.47304, 2012.
DOI : 10.1371/journal.pone.0047304.s005

V. Jallu, G. Bertrand, F. Bianchi, C. Chenet, P. Poulain et al., The alphaIIb p.Leu841Met (Cab3(a+) ) polymorphism results in a new human platelet alloantigen involved in neonatal alloimmune thrombocytopenia, Transfusion, pp.53-554, 2013.

L. Chevrier, A. De-brevern, E. Hernandez, J. Leprince, H. Vaudry et al., PRR Repeats in the Intracellular Domain of KISS1R Are Important for Its Export to Cell Membrane, Molecular Endocrinology, vol.27, issue.6, pp.27-1004, 2013.
DOI : 10.1210/me.2012-1386

URL : https://hal.archives-ouvertes.fr/inserm-00926577

H. Berman, K. Henrick, and H. Nakamura, Announcing the worldwide Protein Data Bank, Nature Structural Biology, vol.10, issue.12, p.980, 2003.
DOI : 10.1038/nsb1203-980

P. Craveur, J. Rebehmed, and A. G. De-brevern, PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins, Database, vol.2014, issue.0, p.2014, 2014.
DOI : 10.1093/database/bau041

F. Sievers and D. G. Higgins, Clustal Omega, Accurate Alignment of Very Large Numbers of Sequences, Methods Mol Biol, pp.1079-105, 2014.
DOI : 10.1007/978-1-62703-646-7_6

W. L. Delano, The PyMOL Molecular Graphics System on World Wide Web, 2013.

R. Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 2013.

S. Leonard, A. P. Joseph, N. Srinivasan, J. C. Gelly, and A. G. De-brevern, mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet, Journal of Biomolecular Structure and Dynamics, vol.48, issue.4, pp.32-661, 2014.
DOI : 10.1371/journal.pcbi.0040010

URL : https://hal.archives-ouvertes.fr/inserm-00926338

I. Kufareva and R. Abagyan, Methods of Protein Structure Comparison, Methods Mol Biol, vol.857, pp.231-257, 2012.
DOI : 10.1007/978-1-61779-588-6_10

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.22-2577, 1983.
DOI : 10.1002/bip.360221211

L. Fourrier, C. Benros, and A. G. De-brevern, Use of a structural alphabet for analysis of short loops connecting repetitive structures, BMC Bioinformatics, vol.5, issue.58, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00112104

L. J. Mcguffin, K. Bryson, and D. T. Jones, The PSIPRED protein structure prediction server, Bioinformatics, vol.16, issue.4, pp.16-404, 2000.
DOI : 10.1093/bioinformatics/16.4.404

D. W. Buchan, F. Minneci, T. C. Nugent, K. Bryson, and D. T. Jones, Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Research, vol.41, issue.W1, pp.41-349, 2013.
DOI : 10.1093/nar/gkt381

A. Drozdetskiy, C. Cole, J. Procter, and G. J. Barton, JPred4: a protein secondary structure prediction server, Nucleic Acids Research, vol.43, issue.W1, pp.43-389, 2015.
DOI : 10.1093/nar/gkv332

M. Tyagi, A. Bornot, B. Offmann, and A. G. De-brevern, Analysis of loop boundaries using different local structure assignment methods, Protein Science, vol.34, issue.9, pp.1869-1881, 2009.
DOI : 10.1002/pro.198

URL : https://hal.archives-ouvertes.fr/inserm-00392504

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

L. R. Rabiner, A tutorial on hidden Markov models and selected application in speech recognition, Proceedings of the IEEE, pp.257-286, 1989.

A. G. De-brevern, New assessment of a structural alphabet, In Silico Biol, vol.5, pp.283-289, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00132875

C. Schneider, N. Etchebest, J. Srinivasan, A. G. Gelly, and . De-brevern, Protein flexibility in the light of structural alphabets, Frontiers in Molecular Biosciences, vol.2, 2015.

A. G. De-brevern and A. P. Joseph, Species specific amino acid sequence???protein local structure relationships: An analysis in the light of a structural alphabet, Journal of Theoretical Biology, vol.276, issue.1, pp.276-209, 2011.
DOI : 10.1016/j.jtbi.2011.01.047

URL : https://hal.archives-ouvertes.fr/hal-00682413

C. Etchebest, C. Benros, S. Hazout, and A. G. De-brevern, A structural alphabet for local protein structures: Improved prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.20, issue.4, pp.810-827, 2005.
DOI : 10.1002/prot.20458

URL : https://hal.archives-ouvertes.fr/inserm-00143564

V. K. Nguyen, R. Hamers, L. Wyns, and S. Muyldermans, Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire, The EMBO Journal, vol.376, issue.5, pp.19-921, 2000.
DOI : 10.1093/emboj/19.5.921

V. K. Nguyen, S. Muyldermans, and R. Hamers, The specific variable domain of camel heavy-chain antibodies is encoded in the germline, Journal of Molecular Biology, vol.275, issue.3, pp.275-413, 1998.
DOI : 10.1006/jmbi.1997.1477

M. P. Lefranc, V. Giudicelli, C. Ginestoux, and D. , Chaume, IMGT, the international ImMunoGeneTics information system, http://imgt.cines.fr: the reference in immunoinformatics, Stud Health Technol Inform, pp.95-74, 2003.

A. Sircar, K. A. Sanni, J. Shi, and J. J. Gray, Analysis and Modeling of the Variable Region of Camelid Single-Domain Antibodies, The Journal of Immunology, vol.186, issue.11, pp.186-6357, 2011.
DOI : 10.4049/jimmunol.1100116

C. J. Bond, C. Wiesmann, J. C. Marsters, J. , and S. S. Sidhu, A Structure-Based Database of Antibody Variable Domain Diversity, Journal of Molecular Biology, vol.348, issue.3, pp.348-699, 2005.
DOI : 10.1016/j.jmb.2005.02.063

J. D. Capra and J. M. Kehoe, Variable region sequences of five human immunoglobulin heavy chains of the VH3 subgroup: definitive identification of four heavy chain hypervariable regions, Proc Natl Acad Sci U S A, pp.71-845, 1974.

P. Carter, L. Presta, C. M. Gorman, J. B. Ridgway, D. Henner et al., Humanization of an anti-p185HER2 antibody for human cancer therapy., Proceedings of the National Academy of Sciences, vol.89, issue.10, pp.89-4285, 1992.
DOI : 10.1073/pnas.89.10.4285

M. Tyagi, A. G. De-brevern, N. Srinivasan, and B. Offmann, Protein structure mining using a structural alphabet, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.2, pp.71-920, 2008.
DOI : 10.1002/prot.21776

URL : https://hal.archives-ouvertes.fr/inserm-00176443

J. Andreani and J. , Soding, bbcontacts: prediction of beta-strand pairing from direct coupling patterns, Bioinformatics, pp.31-1729, 2015.

A. G. De-brevern, H. Valadie, S. Hazout, and C. Etchebest, Extension of a local backbone description using a structural alphabet: A new approach to the sequence-structure relationship, Protein Science, vol.40, issue.(1/2), pp.11-2871, 2002.
DOI : 10.1110/ps.0220502

URL : https://hal.archives-ouvertes.fr/inserm-00143374

G. Faure, A. Bornot, and A. G. De-brevern, Protein contacts, inter-residue interactions and side-chain modelling, Biochimie, vol.90, issue.4, pp.90-626, 2008.
DOI : 10.1016/j.biochi.2007.11.007

URL : https://hal.archives-ouvertes.fr/inserm-00189828

E. Jacob and R. Unger, A tale of two tails: why are terminal residues of proteins exposed?, Bioinformatics, vol.23, issue.2, pp.23-225, 2007.
DOI : 10.1093/bioinformatics/btl318

D. R. Maass, J. Sepulveda, A. Pernthaner, and C. B. Shoemaker, Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs), Journal of Immunological Methods, vol.324, issue.1-2, pp.324-337, 2007.
DOI : 10.1016/j.jim.2007.04.008

J. C. Almagro and J. Fransson, Humanization of Antibodies, Front Biosci, vol.13, pp.1619-1633, 2008.
DOI : 10.1201/b15103-16

V. B. Kurella and R. Gali, Structure guided homology model based design and engineering of mouse antibodies for humanization, Bioinformation, pp.10-180, 2014.

H. Shirai, C. Prades, R. Vita, P. Marcatili, B. Popovic et al., Antibody informatics for drug discovery, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1844, issue.11, pp.1844-2002, 2014.
DOI : 10.1016/j.bbapap.2014.07.006

URL : https://hal.archives-ouvertes.fr/hal-01088585

M. Kijanka, B. Dorresteijn, S. Oliveira, and P. M. Van-bergen-en-henegouwen, Nanobody-based cancer therapy of solid tumors, Nanomedicine, vol.10, issue.1, pp.10-161, 2015.
DOI : 10.2217/nnm.14.178

M. Dumoulin, K. Conrath, A. Van-meirhaeghe, F. Meersman, K. Heremans et al., Single-domain antibody fragments with high conformational stability, Protein Science, vol.377, issue.3, pp.11-500, 2002.
DOI : 10.1110/ps.34602

D. Saerens, M. Pellis, R. Loris, E. Pardon, M. Dumoulin et al., Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel singledomain antibodies, J Mol Biol, pp.352-597, 2005.

E. De-genst, K. Silence, K. Decanniere, K. Conrath, R. Loris et al., Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies, Proceedings of the National Academy of Sciences, vol.103, issue.12, pp.4586-4591, 2006.
DOI : 10.1073/pnas.0505379103

J. K. Maier and P. Labute, Assessment of fully automated antibody homology modeling protocols in molecular operating environment, Proteins: Structure, Function, and Bioinformatics, vol.26, issue.Database issue, pp.82-1599, 2014.
DOI : 10.1002/prot.24576

J. C. Gelly, A. P. Joseph, N. Srinivasan, and A. G. De-brevern, iPBA: a tool for protein structure comparison using sequence alignment strategies, Nucleic Acids Research, vol.39, issue.suppl, pp.39-57, 2011.
DOI : 10.1093/nar/gkr333

URL : https://hal.archives-ouvertes.fr/inserm-00646241

A. G. De-brevern, A. Bornot, P. Craveur, C. Etchebest, and J. C. Gelly, PredyFlexy: flexibility and local structure prediction from sequence, Nucleic Acids Research, vol.40, issue.W1, pp.40-317, 2012.
DOI : 10.1093/nar/gks482

URL : https://hal.archives-ouvertes.fr/inserm-00750270

A. P. Joseph, A short survey on protein blocks, Biophysical Reviews, vol.30, issue.3, pp.137-147, 2010.
DOI : 10.1007/s12551-010-0036-1

URL : https://hal.archives-ouvertes.fr/inserm-00512823

A. G. De-brevern, New assessment of a structural alphabet, In Silico Biol, vol.5, issue.3, pp.283-292, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00132875

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.41-271, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

M. P. Lefranc, IMGT, the International ImMunoGeneTics Information System, Cold Spring Harb Protoc, issue.6, pp.595-603, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616561

M. P. Lefranc, IMGT, The International ImMunoGeneTics Information System??, http://imgt.cines.fr, Stud Health Technol Inform, pp.95-74, 2003.
DOI : 10.1385/1-59259-666-5:27