C. Grabbe, K. Husnjak, and I. Dikic, The spatial and temporal organization of ubiquitin networks, Nature reviews, Molecular cell biology, vol.12, pp.295-307, 2011.

G. Rabut, Introduction to the pervasive role of ubiquitin-dependent protein degradation in cell regulation, Seminars in cell & developmental biology, p.481, 2012.

M. J. Clague, C. Heride, and S. Urbé, The demographics of the ubiquitin system, Trends in cell biology, pp.417-426, 2015.

Y. Ye and M. Rape, Building ubiquitin chains: E2 enzymes at work, Nature reviews, Molecular cell biology, vol.10, pp.755-764, 2009.

W. Li, M. H. Bengtson, and A. Ulbrich, Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling, PloS one. 3, e1487 Atypical ubiquitylation -the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages, Nature reviews, Molecular cell biology, vol.13, pp.508-523, 2008.

D. Komander and M. Rape, The ubiquitin code, Annual review of biochemistry, pp.203-229, 2012.

G. Markson, C. Kiel, and R. Hyde, Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network, Genome Research, vol.19, issue.10, pp.1905-1911, 2009.
DOI : 10.1101/gr.093963.109

D. E. Christensen, P. S. Brzovic, R. E. Klevit, A. Khmelinskii, E. Blaszczak et al., Molecular systems biology. 5, 295. 10 E2-BRCA1 RING interactions dictate synthesis of mono-or specific polyubiquitin chain linkages, Nature structural & molecular biology, RING E3 interactions of the human ubiquitin-proteasome system, pp.941-948, 2007.

T. K. Kerppola, Bimolecular Fluorescence Complementation: Visualization of Molecular Interactions in Living Cells Fluorescence complementation: an emerging tool for biological research, Trends in biotechnology Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation, Chemical Society reviews, Methods in Cell Biology, pp.431-470, 2008.

Y. Kodama, C. Hu, K. E. Miller, Y. Kim, and W. Huh, Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in live cells, Cold Spring Harbor protocols, BioTechniques. Journal of molecular biology T.K. Kerppola, vol.53, issue.17, pp.285-298, 2012.

M. Weber-boyvat, S. Li, and K. Skarp, Bimolecular fluorescence complementation (BiFC) technique in yeast Saccharomyces cerevisiae and mammalian cells, Methods in molecular biology, pp.277-288, 2015.

M. Morell, A. Espargaró, and F. X. Avilés, Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation, Cell reports Adaptive imaging cytometry to estimate parameters of gene networks models in systems and synthetic biology Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments, Study Protein-protein Interactions in Living Plant Cells Improvement of a Venus-based bimolecular fluorescence complementation assay to visualize bFos-bJun interaction in living cells, Bioscience, biotechnology, and biochemistry, pp.1-14, 2005.

J. Lin, N. Wang, and Y. Li, LEC???BiFC: a new method for rapid assay of protein interaction, Biotechnic & Histochemistry, vol.24, issue.4, pp.272-279, 2011.
DOI : 10.3109/10520295.2010.483068

M. Sung and W. Huh, Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae, pp.767-775, 2007.

M. Sung, G. Lim, and D. Yi, Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast, Genome research, pp.736-746, 2013.

C. Salvat, G. Wang, and A. Dastur, The -4 phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases The Journal of biological chemistry Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming, Nature structural & molecular biology Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex, Molecular cell, Proceedings of the National Academy of Sciences of the United States of America, pp.18935-18943, 1993.

M. B. Metzger, Y. Liang, and R. Das, A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms, Molecular cell 16 High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in (2014) New insights into ubiquitin E3 ligase mechanism, Nature structural & molecular biology Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association, Methods in Microbiology, pp.516-527, 2007.

M. Blondel, S. Bach, and S. Bamps, Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast, The EMBO journal E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity, Journal of molecular biology, vol.24, issue.385, pp.1440-1452, 2005.

M. K. Malleshaiah, V. Shahrezaei, and P. S. Swain, The scaffold protein Ste5 directly controls a switch-like mating decision in yeast, Nature, vol.3, issue.7294, pp.101-105, 2010.
DOI : 10.1038/nature08946

J. C. Waters, D. R. Rines, D. Thomann, and J. F. Dorn, Accuracy and precision in quantitative fluorescence microscopy The Journal of cell biology Live cell imaging of yeast, Cold Spring Harbor protocols A guide to choosing fluorescent proteins, Nature methods, pp.1135-1148, 2005.

A. Horstman, I. A. Tonaco, and K. Boutilier, A cautionary note on the use of split- YFP/BiFC in plant protein-protein interaction studies, International journal of molecular sciences, pp.9628-9643, 2014.

M. A. Sheff, K. S. Thorn, F. Luisier, C. Vonesch, and T. Blu, Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae, Yeast Spectral Imaging and Linear Unmixing in Light Microscopy Signal processing, Microscopy Techniques, pp.661-670, 2004.