K. Gundersen, Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise, Biological Reviews, vol.16, issue.3, pp.564-600, 2011.
DOI : 10.1111/j.1469-185X.2010.00161.x

S. Schiaffino and C. Reggiani, Fiber Types in Mammalian Skeletal Muscles, Physiological Reviews, vol.91, issue.4, pp.1447-531, 2011.
DOI : 10.1152/physrev.00031.2010

T. Braun and M. Gautel, Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis, Nature Reviews Molecular Cell Biology, vol.16, issue.6, pp.349-61, 2011.
DOI : 10.1038/nrm3118

S. Greising, H. Gransee, C. Mantilla, and G. Sieck, Systems biology of skeletal muscle: fiber type as an organizing principle, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.2, issue.5, pp.457-73, 2012.
DOI : 10.1002/wsbm.1184

M. Murgia, N. Nagaraj, A. Deshmukh, M. Zeiler, P. Cancellara et al., Single muscle fiber proteomics reveals unexpected mitochondrial specialization, EMBO reports, vol.16, issue.3, pp.387-95, 2015.
DOI : 10.15252/embr.201439757

G. Babu, P. Bhupathy, V. Timofeyev, N. Petrashevskaya, P. Reiser et al., Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility, Proceedings of the National Academy of Sciences, vol.104, issue.45, pp.17867-72, 2007.
DOI : 10.1073/pnas.0707722104

A. Tupling, M. Asahi, and D. Maclennan, Sarcolipin Overexpression in Rat Slow Twitch Muscle Inhibits Sarcoplasmic Reticulum Ca2+ Uptake and Impairs Contractile Function, Journal of Biological Chemistry, vol.277, issue.47, pp.44740-44746, 2002.
DOI : 10.1074/jbc.M206171200

A. Winther, M. Bublitz, J. Karlsen, J. Moller, J. Hansen et al., The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm, Nature, vol.260, issue.7440, pp.265-274, 2013.
DOI : 10.1038/nature06419

C. Toyoshima, S. Iwasawa, H. Ogawa, A. Hirata, J. Tsueda et al., Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state, Nature, vol.276, issue.7440, pp.260-264, 2013.
DOI : 10.1016/0005-2795(80)90208-1

D. Anderson, K. Anderson, C. Chang, C. Makarewich, B. Nelson et al., A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance, Cell, vol.160, issue.4, pp.595-606, 2015.
DOI : 10.1016/j.cell.2015.01.009

B. Schwaller, J. Dick, G. Dhoot, S. Carroll, G. Vrbova et al., Prolonged contraction-relaxation cycle of fast-twitch muscles in parvalbumin knockout mice, Am J Physiol, vol.276, issue.2, pp.395-403, 1999.

A. Rao, C. Luo, and P. Hogan, TRANSCRIPTION FACTORS OF THE NFAT FAMILY:Regulation and Function, Annual Review of Immunology, vol.15, issue.1, pp.707-754, 1997.
DOI : 10.1146/annurev.immunol.15.1.707

F. Naya, B. Mercer, J. Shelton, J. Richardson, R. Williams et al., Stimulation of Slow Skeletal Muscle Fiber Gene Expression by Calcineurin in Vivo, Journal of Biological Chemistry, vol.275, issue.7, pp.4545-4553, 2000.
DOI : 10.1074/jbc.275.7.4545

J. Tothova, B. Blaauw, G. Pallafacchina, R. R. Argentini, C. Reggiani et al., NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle, Journal of Cell Science, vol.119, issue.8, pp.1604-1615, 2006.
DOI : 10.1242/jcs.02875

M. Potthoff, H. Wu, M. Arnold, J. Shelton, J. Backs et al., Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers, Journal of Clinical Investigation, vol.117, issue.9, pp.2459-67, 2007.
DOI : 10.1172/JCI31960DS1

S. Summermatter, G. Santos, J. Perez-schindler, and C. Handschin, Skeletal muscle PGC-1?? controls whole-body lactate homeostasis through estrogen-related receptor ??-dependent activation of LDH B and repression of LDH A, Proceedings of the National Academy of Sciences, vol.110, issue.21, pp.8738-8781, 2013.
DOI : 10.1073/pnas.1212976110

B. Egan and J. Zierath, Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation, Cell Metabolism, vol.17, issue.2, pp.162-84, 2013.
DOI : 10.1016/j.cmet.2012.12.012

T. Gali-ramamoorthy, G. Laverny, A. Schlagowski, J. Zoll, N. Messaddeq et al., The transcriptional coregulator PGC-1?? controls mitochondrial function and anti-oxidant defence in skeletal muscles, Nature Communications, vol.8, p.10210, 2015.
DOI : 10.1038/ncomms10210

G. Rowe, I. Patten, Z. Zsengeller, R. El-khoury, M. Okutsu et al., Disconnecting Mitochondrial Content from Respiratory Chain Capacity in PGC-1-Deficient Skeletal Muscle, Cell Reports, vol.3, issue.5, pp.1449-56, 2013.
DOI : 10.1016/j.celrep.2013.04.023

M. Schuler, F. Ali, C. Chambon, D. Duteil, J. Bornert et al., PGC1?? expression is controlled in skeletal muscles by PPAR??, whose ablation results in fiber-type switching, obesity, and type 2 diabetes, Cell Metabolism, vol.4, issue.5, pp.407-421, 2006.
DOI : 10.1016/j.cmet.2006.10.003

I. Lunde, M. Ekmark, Z. Rana, A. Buonanno, and K. Gundersen, PPAR?? expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer, The Journal of Physiology, vol.510, issue.3, pp.1277-87, 2007.
DOI : 10.1113/jphysiol.2007.133025

D. Quiat, K. Voelker, P. J. Grishin, N. Grange, R. Bassel-duby et al., Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6, Proceedings of the National Academy of Sciences, vol.108, issue.25, pp.10196-201, 2011.
DOI : 10.1073/pnas.1107413108

N. Hagiwara, M. Yeh, and A. Liu, Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice, Developmental Dynamics, vol.99, issue.8, pp.2062-76, 2007.
DOI : 10.1002/dvdy.21223

C. An, Y. Dong, and N. Hagiwara, Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6, BMC Developmental Biology, vol.11, issue.1, p.59, 2011.
DOI : 10.1093/nar/19.10.2785

I. Sakakibara, M. Santolini, A. Ferry, V. Hakim, and M. P. , Six Homeoproteins and a linc-RNA at the Fast MYH Locus Lock Fast Myofiber Terminal Phenotype, PLoS Genetics, vol.36, issue.5, p.1004386, 2014.
DOI : 10.1371/journal.pgen.1004386.s012

M. Ekmark, Z. Rana, G. Stewart, D. Hardie, and K. Gundersen, De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle, The Journal of Physiology, vol.20, issue.2, pp.637-50, 2007.
DOI : 10.1113/jphysiol.2007.141457

R. Grifone, C. Laclef, F. Spitz, S. Lopez, J. Demignon et al., Six1 and Eya1 Expression Can Reprogram Adult Muscle from the Slow-Twitch Phenotype into the Fast-Twitch Phenotype, Molecular and Cellular Biology, vol.24, issue.14, pp.6253-67, 2004.
DOI : 10.1128/MCB.24.14.6253-6267.2004

S. Mason, R. Howlett, M. Kim, I. Olfert, M. Hogan et al., Loss of Skeletal Muscle HIF-1?? Results in Altered Exercise Endurance, PLoS Biology, vol.47, issue.10, p.288, 2004.
DOI : 10.1371/journal.pbio.0020288.t005

A. Richard, J. Demignon, I. Sakakibara, J. Pujol, M. Favier et al., Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression, Developmental Biology, vol.359, issue.2, pp.303-323, 2011.
DOI : 10.1016/j.ydbio.2011.08.010

S. Vincent, A. Mayeuf, C. Niro, M. Saitou, and M. Buckingham, Non Conservation of Function for the Evolutionarily Conserved Prdm1 Protein in the Control of the Slow Twitch Myogenic Program in the Mouse Embryo, Molecular Biology and Evolution, vol.29, issue.10, pp.3181-91, 2012.
DOI : 10.1093/molbev/mss125

R. Grifone, J. Demignon, C. Houbron, E. Souil, C. Niro et al., Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo, Development, vol.132, issue.9, pp.2235-2284, 2005.
DOI : 10.1242/dev.01773

F. Relaix, J. Demignon, C. Laclef, J. Pujol, M. Santolini et al., Six Homeoproteins Directly Activate Myod Expression in the Gene Regulatory Networks That Control Early Myogenesis, PLoS Genetics, vol.24, issue.4, p.1003425, 2013.
DOI : 10.1371/journal.pgen.1003425.s002

URL : https://hal.archives-ouvertes.fr/hal-01308854

Y. Liu, A. Chu, I. Chakroun, U. Islam, and A. Blais, Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation, Nucleic Acids Research, vol.38, issue.20, pp.6857-71, 2010.
DOI : 10.1093/nar/gkq585

M. Buckingham and P. Rigby, Gene Regulatory Networks and Transcriptional Mechanisms that Control Myogenesis, Developmental Cell, vol.28, issue.3, pp.225-263, 2014.
DOI : 10.1016/j.devcel.2013.12.020

C. Niro, J. Demignon, S. Vincent, Y. Liu, J. Giordani et al., Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome, Developmental Biology, vol.338, issue.2, pp.168-82, 2010.
DOI : 10.1016/j.ydbio.2009.11.031

M. Schuler, F. Ali, E. Metzger, P. Chambon, and D. Metzger, Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse, genesis, vol.33, issue.4, pp.165-70, 2005.
DOI : 10.1002/gene.20107

URL : https://hal.archives-ouvertes.fr/hal-00187752

P. Hallauer and K. Hastings, Coregulation of fast contractile protein transgene and glycolytic enzyme expression in mouse skeletal muscle, AJP: Cell Physiology, vol.282, issue.1, pp.113-124, 2002.
DOI : 10.1152/ajpcell.00294.2001

J. Giordani, L. Bajard, J. Demignon, P. Daubas, M. Buckingham et al., Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs, Proceedings of the National Academy of Sciences, vol.104, issue.27, pp.11310-11315, 2007.
DOI : 10.1073/pnas.0611299104

R. White, A. Bierinx, V. Gnocchi, and P. Zammit, Dynamics of muscle fibre growth during postnatal mouse development, BMC Developmental Biology, vol.10, issue.1, p.21, 2010.
DOI : 10.1186/1471-213X-10-21

H. Yajima, N. Motohashi, Y. Ono, S. Sato, K. Ikeda et al., Six family genes control the proliferation and differentiation of muscle satellite cells, Experimental Cell Research, vol.316, issue.17, pp.3162932-3162976, 2010.
DOI : 10.1016/j.yexcr.2010.08.001

L. Grand, F. Grifone, R. Mourikis, P. Houbron, C. Gigaud et al., Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration, The Journal of Cell Biology, vol.12, issue.5, pp.815-847, 2012.
DOI : 10.1083/jcb.200312007

Y. Liu, I. Chakroun, D. Yang, E. Horner, J. Liang et al., Six1 Regulates MyoD Expression in Adult Muscle Progenitor Cells, PLoS ONE, vol.169, issue.6, p.67762, 2013.
DOI : 10.1371/journal.pone.0067762.s001

P. Racay, P. Gregory, and B. Schwaller, Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins, FEBS Journal, vol.5, issue.1, pp.96-108, 2006.
DOI : 10.1006/abio.1987.9999

G. Chen, S. Carroll, P. Racay, J. Dick, D. Pette et al., Deficiency in parvalbumin increases fatigue resistance in fast-twitch muscle and upregulates mitochondria, Am J Physiol Cell Physiol, vol.281, issue.1, pp.114-122, 2001.

S. Ducreux, P. Gregory, and B. Schwaller, Inverse Regulation of the Cytosolic Ca2+ Buffer Parvalbumin and Mitochondrial Volume in Muscle Cells via SIRT1/PGC-1?? Axis, PLoS ONE, vol.7, issue.9, p.44837, 2012.
DOI : 10.1371/journal.pone.0044837.t002

K. Sakamoto and G. Holman, Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic, AJP: Endocrinology and Metabolism, vol.295, issue.1, pp.29-37, 2008.
DOI : 10.1152/ajpendo.90331.2008

N. Hagiwara, B. Ma, and A. Ly, Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant,p100H, Developmental Dynamics, vol.45, issue.2, pp.301-312, 2005.
DOI : 10.1002/dvdy.20535

V. Ribas, B. Drew, Z. Zhou, J. Phun, N. Kalajian et al., Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females, Sci Transl Med, vol.8, issue.334, pp.334-354, 2016.

L. Petchey, C. Risebro, J. Vieira, T. Roberts, J. Bryson et al., in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy, Proceedings of the National Academy of Sciences, vol.111, issue.26, pp.9515-9535, 2014.
DOI : 10.1073/pnas.1406191111

M. Miyazaki and K. Esser, Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals, Journal of Applied Physiology, vol.106, issue.4, pp.1367-73, 1985.
DOI : 10.1152/japplphysiol.91355.2008

J. Qi, J. Gong, T. Zhao, J. Zhao, P. Lam et al., Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue, The EMBO Journal, vol.35, issue.11, pp.1537-1585, 2008.
DOI : 10.1038/emboj.2008.92

J. Shrager, P. Desjardins, J. Burkman, S. Konig, S. Stewart et al., Human skeletal myosin heavy chain genes are tightly linked in the order embryonic-IIa-IId/x-ILb-perinatalextraocular, Journal of Muscle Research and Cell Motility, vol.21, issue.4, pp.345-55, 2000.
DOI : 10.1023/A:1005635030494

O. Agbulut, P. Noirez, F. Beaumont, and G. Butler-browne, Myosin heavy chain isoforms in postnatal muscle development of mice, Biology of the Cell, vol.95, issue.6, pp.399-406, 2003.
DOI : 10.1016/S0248-4900(03)00087-X

C. Slater, Postnatal maturation of nerve-muscle junctions in hindlimb muscles of the mouse, Developmental Biology, vol.94, issue.1, pp.11-22, 1982.
DOI : 10.1016/0012-1606(82)90063-X

K. Kanning, A. Kaplan, and C. Henderson, Motor Neuron Diversity in Development and Disease, Annual Review of Neuroscience, vol.33, issue.1, pp.409-449, 2010.
DOI : 10.1146/annurev.neuro.051508.135722

G. Butler-browne and R. Whalen, Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle, Developmental Biology, vol.102, issue.2, pp.324-358, 1984.
DOI : 10.1016/0012-1606(84)90197-0

E. Olson and R. Williams, Remodeling muscles with calcineurin, BioEssays, vol.500, issue.6, pp.510-519, 2000.
DOI : 10.1002/(SICI)1521-1878(200006)22:6<510::AID-BIES4>3.0.CO;2-1

E. Calabria, S. Ciciliot, I. Moretti, M. Garcia, A. Picard et al., NFAT isoforms control activity-dependent muscle fiber type specification, Proceedings of the National Academy of Sciences, vol.106, issue.32, pp.13335-13375, 2009.
DOI : 10.1073/pnas.0812911106

I. Rybkin, . Om, V. Copeland, M. Czubryt, J. Shelton et al., Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers, Mol Cell Biol, vol.25, issue.15, pp.6629-6667, 2005.

F. Jolesz and F. Sreter, Development, Innervation, and Activity-Pattern Induced Changes in Skeletal Muscle, Annual Review of Physiology, vol.43, issue.1, pp.531-52, 1981.
DOI : 10.1146/annurev.ph.43.030181.002531

S. Salmons and J. Henriksson, The adaptive response of skeletal muscle to increased use, Muscle & Nerve, vol.61, issue.2, pp.94-105, 1981.
DOI : 10.1002/mus.880040204

M. Murgia, A. Serrano, E. Calabria, G. Pallafacchina, T. Lomo et al., Ras is involved in nerve-activity-dependent regulation of muscle genes, Nat Cell Biol, vol.2, issue.3, pp.142-149, 2000.

B. Ohkawara, A. Glinka, and C. Niehrs, Rspo3 Binds Syndecan 4 and Induces Wnt/PCP Signaling via Clathrin-Mediated Endocytosis to Promote Morphogenesis, Developmental Cell, vol.20, issue.3, pp.303-317, 2011.
DOI : 10.1016/j.devcel.2011.01.006

L. Strochlic, J. Falk, E. Goillot, S. Sigoillot, F. Bourgeois et al., Wnt4 Participates in the Formation of Vertebrate Neuromuscular Junction, PLoS ONE, vol.224, issue.1, p.29976, 2012.
DOI : 10.1371/journal.pone.0029976.g006

URL : https://hal.archives-ouvertes.fr/hal-00720087

X. Li, X. Dong, S. Luo, B. Zhang, D. Lee et al., Retrograde regulation of motoneuron differentiation by muscle ??-catenin, Nature Neuroscience, vol.311, issue.3, pp.262-270, 2008.
DOI : 10.1038/nn2053

B. Gambke, G. Lyons, J. Haselgrove, A. Kelly, and N. Rubinstein, Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles, FEBS Letters, vol.299, issue.2, pp.335-344, 1983.
DOI : 10.1016/0014-5793(83)80524-9

D. Zhang, X. Wang, Y. Li, L. Zhao, M. Lu et al., Thyroid hormone regulates muscle fiber type conversion via miR-133a1, The Journal of Cell Biology, vol.278, issue.6, pp.753-66, 2014.
DOI : 10.1083/jcb.201406068.dv

A. Albis, C. Chanoine, C. Janmot, J. Mira, and R. Couteaux, Muscle-specific response to thyroid hormone of myosin isoform transitions during rat postnatal development, European Journal of Biochemistry, vol.19, issue.1, pp.155-61, 1990.
DOI : 10.1016/0092-8674(87)90762-8

J. Kalhovde, R. Jerkovic, I. Sefland, C. Cordonnier, E. Calabria et al., ???Fast??? and ???slow??? muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells, The Journal of Physiology, vol.281, issue.3, pp.847-57, 2005.
DOI : 10.1113/jphysiol.2004.073684

R. Palstra, W. De-laat, and F. Grosveld, Beta-globin regulation and long-range interactions, Adv Genet, vol.61, pp.107-149, 2008.

B. Barber and M. Rastegar, Epigenetic control of Hox genes during neurogenesis, development, and disease, Annals of Anatomy - Anatomischer Anzeiger, vol.192, issue.5, pp.261-74, 2010.
DOI : 10.1016/j.aanat.2010.07.009

K. Hetzler, B. Collins, R. Shanely, H. Sue, and M. Kostek, alters myosin heavy chain isoform expression in mouse skeletal muscle, Acta Physiologica, vol.276, issue.2, pp.415-443, 2014.
DOI : 10.1111/apha.12168

J. Xu, V. Sankaran, M. Ni, T. Menne, R. Puram et al., Transcriptional silencing of ??-globin by BCL11A involves long-range interactions and cooperation with SOX6, Genes & Development, vol.24, issue.8, pp.783-98, 2010.
DOI : 10.1101/gad.1897310

Z. Yi, O. Cohen-barak, N. Hagiwara, P. Kingsley, D. Fuchs et al., Sox6 Directly Silences Epsilon Globin Expression in Definitive Erythropoiesis, PLoS Genetics, vol.311, issue.2, p.14, 2006.
DOI : 0022-3565(2004)311[0968:ECDLCD]2.0.CO;2

E. Van-rooij, D. Quiat, B. Johnson, L. Sutherland, X. Qi et al., A Family of microRNAs Encoded by Myosin Genes Governs Myosin Expression and Muscle Performance, Developmental Cell, vol.17, issue.5, pp.662-73, 2009.
DOI : 10.1016/j.devcel.2009.10.013