G. D. Scholes, Lessons from nature about solar light harvesting, Nature Chemistry, vol.132, issue.10, pp.763-774, 2011.
DOI : 10.1073/pnas.0908989106

C. L. Tavano and T. J. Donohue, Development of the bacterial photosynthetic apparatus, Current Opinion in Microbiology, vol.9, issue.6, pp.625-631, 2006.
DOI : 10.1016/j.mib.2006.10.005

R. J. Cogdell, The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes, Quarterly Reviews of Biophysics, vol.39, issue.03, pp.227-324, 2006.
DOI : 10.1017/S0033583506004434

G. Mcdermott, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature, vol.374, issue.6522, pp.517-521, 1995.
DOI : 10.1038/374517a0

J. Koepke, The crystal structure of the light-harvesting complex II (B800???850) from Rhodospirillum molischianum, Structure, vol.4, issue.5, pp.581-597, 1996.
DOI : 10.1016/S0969-2126(96)00063-9

J. Deisenhofer, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3??? resolution, Nature, vol.216, issue.6047, pp.618-624, 1985.
DOI : 10.1038/318618a0

J. P. Allen, Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits., Proceedings of the National Academy of Sciences, vol.84, issue.17, pp.6162-6166, 1987.
DOI : 10.1073/pnas.84.17.6162

T. Nogi, Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: Thermostability and electron transfer, Proceedings of the National Academy of Sciences, vol.97, issue.25, 2000.
DOI : 10.1073/pnas.240224997

A. W. Roszak, Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris, Science, vol.302, issue.5652, pp.1969-1972, 2003.
DOI : 10.1126/science.1088892

L. Esser, Inhibitor-complexed Structures of the Cytochrome bc1 from the Photosynthetic Bacterium Rhodobacter sphaeroides, Journal of Biological Chemistry, vol.283, issue.5, pp.2846-2857, 2008.
DOI : 10.1074/jbc.M708608200

E. A. Berry, : Comparison with its Mitochondrial and Chloroplast Counterparts, Photosynthesis Research, vol.81, issue.3, pp.251-275, 2004.
DOI : 10.1023/B:PRES.0000036888.18223.0e

J. P. Abrahams, Structure at 2.8 ?? resolution of F1-ATPase from bovine heart mitochondria, Nature, vol.370, issue.6491, pp.621-628, 1994.
DOI : 10.1038/370621a0

T. Meier, Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus, Science, vol.308, issue.5722, pp.659-662, 2005.
DOI : 10.1126/science.1111199

X. Hu, Photosynthetic apparatus of purple bacteria, Quarterly Reviews of Biophysics, vol.35, issue.01, pp.1-62, 2002.
DOI : 10.1017/S0033583501003754

V. Sundström, Photosynthetic Light-Harvesting:?? Reconciling Dynamics and Structure of Purple Bacterial LH2 Reveals Function of Photosynthetic Unit, The Journal of Physical Chemistry B, vol.103, issue.13, pp.2327-2346, 1999.
DOI : 10.1021/jp983722+

G. Binnig, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

A. Engel and H. E. Gaub, Structure and Mechanics of Membrane Proteins, Annual Review of Biochemistry, vol.77, issue.1, pp.127-148, 2008.
DOI : 10.1146/annurev.biochem.77.062706.154450

L. N. Liu, S. S. Scheuring, and J. N. Sturgis, High-resolution AFM imaging of native biological membranes Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery, Nanoscale Liquid Interfaces: Wetting, Patterning and Force Microscopy at Molecular Scale, pp.655-678, 2009.

D. J. Mü-ller and Y. F. Dufrêne, Atomic force microscopy: a nanoscopic window on the cell surface, Trends in Cell Biology, vol.21, issue.8, pp.461-469, 2011.
DOI : 10.1016/j.tcb.2011.04.008

S. Scheuring, Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM, Proceedings of the National Academy of Sciences, vol.100, issue.4, pp.1690-1693, 2003.
DOI : 10.1073/pnas.0437992100

L. N. Liu, Forces guiding assembly of light-harvesting complex 2 in native membranes, Proceedings of the National Academy of Sciences, vol.108, issue.23, pp.9455-9459, 2011.
DOI : 10.1073/pnas.1004205108

S. Scheuring, High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2, The EMBO Journal, vol.20, issue.12, pp.3029-3035, 2001.
DOI : 10.1093/emboj/20.12.3029

P. Fechner, Structural Information, Resolution, and Noise in High-Resolution Atomic Force Microscopy Topographs, Biophysical Journal, vol.96, issue.9, pp.3822-3831, 2009.
DOI : 10.1016/j.bpj.2009.02.011

S. Scheuring, AFM Characterization of Tilt and Intrinsic Flexibility of Rhodobacter sphaeroides Light Harvesting Complex 2 (LH2), Journal of Molecular Biology, vol.325, issue.3, pp.569-580, 2003.
DOI : 10.1016/S0022-2836(02)01241-X

L. N. Liu, Dimers of light-harvesting complex 2 from Rhodobacter???sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy, FEBS Journal, vol.118, issue.12, pp.3157-3166, 2008.
DOI : 10.1111/j.1742-4658.2008.06469.x

R. P. Gonçalves, Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 investigated by high resolution AFM, Journal of Structural Biology, vol.149, issue.1, pp.79-86, 2005.
DOI : 10.1016/j.jsb.2004.09.001

S. Bahatyrova, Flexibility and Size Heterogeneity of the LH1 Light Harvesting Complex Revealed by Atomic Force Microscopy: FUNCTIONAL SIGNIFICANCE FOR BACTERIAL PHOTOSYNTHESIS, Journal of Biological Chemistry, vol.279, issue.20, pp.21327-21333, 2004.
DOI : 10.1074/jbc.M313039200

D. Fotiadis, Structural Analysis of the Reaction Center Light-harvesting Complex I Photosynthetic Core Complex of Rhodospirillum rubrum Using Atomic Force Microscopy, Journal of Biological Chemistry, vol.279, issue.3, pp.2063-2068, 2004.
DOI : 10.1074/jbc.M310382200

S. Scheuring, Structural Role of PufX in the Dimerization of the Photosynthetic Core Complex of Rhodobacter sphaeroides, Journal of Biological Chemistry, vol.279, issue.5, pp.3620-3626, 2004.
DOI : 10.1074/jbc.M310050200

D. Fotiadis, Surface analysis of the photosystem I complex by electron and atomic force microscopy, Journal of Molecular Biology, vol.283, issue.1, pp.83-94, 1998.
DOI : 10.1006/jmbi.1998.2097

D. Pogoryelov, The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory, EMBO reports, vol.167, issue.11, pp.1040-1044, 2005.
DOI : 10.1016/S0022-2836(02)00597-1

D. Pogoryelov, The Oligomeric State of c Rings from Cyanobacterial F-ATP Synthases Varies from 13 to 15, Journal of Bacteriology, vol.189, issue.16, pp.5895-5902, 2007.
DOI : 10.1128/JB.00581-07

H. Seelert, Fourteen Protomers Compose the Oligomer III of the Proton-rotor in Spinach Chloroplast ATP Synthase, Journal of Molecular Biology, vol.333, issue.2, pp.337-344, 2003.
DOI : 10.1016/j.jmb.2003.08.046

S. Scheuring, Watching the photosynthetic apparatus in native membranes, Proceedings of the National Academy of Sciences, vol.101, issue.31, pp.11293-11297, 2004.
DOI : 10.1073/pnas.0404350101

S. Scheuring, Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum, The EMBO Journal, vol.8, issue.21, pp.4127-4133, 2004.
DOI : 10.1126/science.277.5322.60

L. N. Liu, Quinone Pathways in Entire Photosynthetic Chromatophores of Rhodospirillum photometricum, Journal of Molecular Biology, vol.393, issue.1, pp.27-35, 2009.
DOI : 10.1016/j.jmb.2009.07.044

S. Scheuring and J. N. Sturgis, Chromatic Adaptation of Photosynthetic Membranes, Science, vol.309, issue.5733, pp.484-487, 2005.
DOI : 10.1126/science.1110879

S. Bahatyrova, The native architecture of a photosynthetic membrane, Nature, vol.82, issue.7003, pp.1058-1062, 2004.
DOI : 10.1063/1.1144378

S. Scheuring, Structure of the Dimeric PufX-containing Core Complex of Rhodobacter blasticus by in Situ Atomic Force Microscopy, Journal of Biological Chemistry, vol.280, issue.2, pp.1426-1431, 2005.
DOI : 10.1074/jbc.M411334200

S. Scheuring, The Photosynthetic Apparatus of Rhodopseudomonas palustris: Structures and Organization, Journal of Molecular Biology, vol.358, issue.1, pp.83-96, 2006.
DOI : 10.1016/j.jmb.2006.01.085

URL : https://hal.archives-ouvertes.fr/hal-00021099

R. P. Gonçalves, Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum, Journal of Structural Biology, vol.152, issue.3, p.221, 2005.
DOI : 10.1016/j.jsb.2005.10.002

L. N. Liu, Native architecture of the photosynthetic membrane from Rhodobacter veldkampii, Journal of Structural Biology, vol.173, issue.1, p.138, 2011.
DOI : 10.1016/j.jsb.2010.08.010

URL : https://hal.archives-ouvertes.fr/hal-01458280

J. D. Olsen, The Organization of LH2 Complexes in Membranes from Rhodobacter sphaeroides, Journal of Biological Chemistry, vol.283, issue.45, pp.30772-30779, 2008.
DOI : 10.1074/jbc.M804824200

P. Qian, Three-dimensional Reconstruction of a Membrane-bending Complex: THE RC-LH1-PufX CORE DIMER OF RHODOBACTER SPHAEROIDES, Journal of Biological Chemistry, vol.283, issue.20, pp.14002-14011, 2008.
DOI : 10.1074/jbc.M800625200

R. N. Frese, Protein Shape and Crowding Drive Domain Formation and Curvature in Biological Membranes, Biophysical Journal, vol.94, issue.2, pp.640-647, 2008.
DOI : 10.1529/biophysj.107.116913

P. G. Adams, Monomeric RC???LH1 core complexes retard LH2 assembly and intracytoplasmic membrane formation in PufX-minus mutants of Rhodobacter sphaeroides, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.9, pp.1044-1055, 2011.
DOI : 10.1016/j.bbabio.2011.05.019

I. W. Ng, Carotenoids are essential for normal levels of dimerisation of the RC???LH1???PufX core complex of Rhodobacter sphaeroides: Characterisation of R-26 as a crtB (phytoene synthase) mutant, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1807, issue.9, pp.1056-1063, 2011.
DOI : 10.1016/j.bbabio.2011.05.020

N. Buzhynskyy, High resolution imaging and manipulation of membrane proteins Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides, Life at the Nanoscale: Atomic Force Microscopy of Live Cells, pp.21-44, 2011.

L. N. Liu, Watching the Native Supramolecular Architecture of Photosynthetic Membrane in Red Algae: TOPOGRAPHY OF PHYCOBILISOMES AND THEIR CROWDING, DIVERSE DISTRIBUTION PATTERNS, Journal of Biological Chemistry, vol.283, issue.50, pp.34946-34953, 2008.
DOI : 10.1074/jbc.M805114200

J. P. Dekker and E. J. Boekema, Supramolecular organization of thylakoid membrane proteins in green plants, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1706, issue.1-2, pp.12-39, 2005.
DOI : 10.1016/j.bbabio.2004.09.009

F. Oesterhelt, Unfolding Pathways of Individual Bacteriorhodopsins, Science, vol.288, issue.5463, pp.143-146, 2000.
DOI : 10.1126/science.288.5463.143

C. Mascle-allemand, Antenna mixing in photosynthetic membranes from Phaeospirillum molischianum, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5357-5362, 2010.
DOI : 10.1073/pnas.0914854107

S. Scheuring and J. N. Sturgis, Dynamics and Diffusion in Photosynthetic Membranes from Rhodospirillum Photometricum, Biophysical Journal, vol.91, issue.10, p.3707, 2006.
DOI : 10.1529/biophysj.106.083709

K. Woronowicz, Intracytoplasmic Membrane Results in a Slowing of the Electron Transfer Turnover Rate of Photochemical Reaction Centers, Biochemistry, vol.50, issue.22, pp.4819-4829, 2011.
DOI : 10.1021/bi101667e

C. Mascle-allemand, Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.12, pp.1552-1559, 2008.
DOI : 10.1016/j.bbabio.2008.09.010

J. R. Bowyer, Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites, J. Biol. Chem, vol.260, pp.3295-3304, 1985.

J. Hsin, Self-Assembly of Photosynthetic Membranes, ChemPhysChem, vol.14, issue.6, pp.1154-1159, 2010.
DOI : 10.1002/cphc.200900911

M. K. 61-ener, Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.15723-15728, 2007.

T. Geyer and V. Helms, A Spatial Model of the Chromatophore Vesicles of Rhodobacter sphaeroides and the Position of the Cytochrome bc1 Complex, Biophysical Journal, vol.91, issue.3, pp.921-926, 2006.
DOI : 10.1529/biophysj.105.078501

S. Scheuring, From high-resolution AFM topographs to atomic models of supramolecular assemblies, Journal of Structural Biology, vol.159, issue.2, pp.268-276, 2007.
DOI : 10.1016/j.jsb.2007.01.021

D. E. Chandler, Intrinsic Curvature Properties of Photosynthetic Proteins in Chromatophores, Biophysical Journal, vol.95, issue.6, p.2822, 2008.
DOI : 10.1529/biophysj.108.132852

D. E. Chandler, Membrane Curvature Induced by Aggregates of LH2s and Monomeric LH1s, Biophysical Journal, vol.97, issue.11, pp.2978-2984, 2009.
DOI : 10.1016/j.bpj.2009.09.007

C. A. Siebert, Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX, The EMBO Journal, vol.23, issue.4, pp.690-700, 2004.
DOI : 10.1038/sj.emboj.7600092

J. Hsin, Protein-Induced Membrane Curvature Investigated through Molecular Dynamics Flexible Fitting, Biophysical Journal, vol.97, issue.1, pp.321-329, 2009.
DOI : 10.1016/j.bpj.2009.04.031

J. D. Tucker, Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles, Molecular Microbiology, vol.189, issue.4, pp.833-847, 2010.
DOI : 10.1111/j.1365-2958.2010.07153.x

Y. Zhu, Microscopic and spectroscopic studies of untreated and hexanol-treated chlorosomes from Chloroflexus aurantiacus, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1232, issue.3, pp.197-207, 1995.
DOI : 10.1016/0005-2728(95)00118-2

A. Martinez-planells, Determination of the topography and biometry of chlorosomes by atomic force microscopy, Photosynthesis Research, vol.71, issue.1/2, pp.83-90, 2002.
DOI : 10.1023/A:1014955614757

G. A. Montano, Characterization of Chlorobium tepidum Chlorosomes: A Calculation of Bacteriochlorophyll c per Chlorosome and Oligomer Modeling, Biophysical Journal, vol.85, issue.4, pp.2560-2565, 2003.
DOI : 10.1016/S0006-3495(03)74678-5

A. A. Arteni, Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum, Photosynthesis Research, vol.579, issue.2-3, pp.169-174, 2008.
DOI : 10.1007/s11120-007-9264-z

L. N. Liu, FRAP Analysis on Red Alga Reveals the Fluorescence Recovery Is Ascribed to Intrinsic Photoprocesses of Phycobilisomes than Large-Scale Diffusion, PLoS ONE, vol.16, issue.4, p.5295, 2009.
DOI : 10.1371/journal.pone.0005295.g009

D. Kaftan, From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes, The EMBO Journal, vol.409, issue.22, pp.6146-6153, 2002.
DOI : 10.1093/emboj/cdf624

T. Yamada, Use of AFM for imaging and measurement of the mechanical properties of light-convertible organelles in plants, Ultramicroscopy, vol.91, issue.1-4, pp.261-268, 2002.
DOI : 10.1016/S0304-3991(02)00107-9

C. C. Gradinaru, Simultaneous atomic-force and two-photon fluorescence imaging of biological specimens in vivo, Ultramicroscopy, vol.99, issue.4, pp.235-245, 2004.
DOI : 10.1016/j.ultramic.2003.12.009

S. G. Chuartzman, Thylakoid Membrane Remodeling during State Transitions in Arabidopsis, THE PLANT CELL ONLINE, vol.20, issue.4, pp.1029-1039, 2008.
DOI : 10.1105/tpc.107.055830

K. Sznee, Jumping Mode Atomic Force Microscopy on Grana Membranes from Spinach, Journal of Biological Chemistry, vol.286, issue.45, pp.39164-39171, 2011.
DOI : 10.1074/jbc.M111.284844

A. Sumino, Selective Assembly of Photosynthetic Antenna Proteins into a Domain-Structured Lipid Bilayer for the Construction of Artificial Photosynthetic Antenna Systems: Structural Analysis of the Assembly Using Surface Plasmon Resonance and Atomic Force Microscopy, Langmuir, vol.27, issue.3, pp.1092-1099, 2011.
DOI : 10.1021/la103281q

A. Sumino, Construction and Structural Analysis of Tethered Lipid Bilayer Containing Photosynthetic Antenna Proteins for Functional Analysis, Biomacromolecules, vol.12, issue.7, pp.2850-2858, 2011.
DOI : 10.1021/bm200585y

N. Buzhynskyy, Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes, Biophysical Journal, vol.93, issue.8, p.2870, 2007.
DOI : 10.1529/biophysj.107.109728

R. P. 85-gonçalves, Supramolecular Assembly of VDAC in Native Mitochondrial Outer Membranes, Journal of Molecular Biology, vol.369, issue.2, pp.413-418, 2007.
DOI : 10.1016/j.jmb.2007.03.063

N. Buzhynskyy, The supramolecular architecture of junctional microdomains in native lens membranes, EMBO reports, vol.27, issue.1, p.51, 2007.
DOI : 10.1006/exer.2002.2041

N. Buzhynskyy, Human Cataract Lens Membrane at Subnanometer Resolution, Journal of Molecular Biology, vol.374, issue.1, pp.162-169, 2007.
DOI : 10.1016/j.jmb.2007.09.022

D. Fotiadis, Atomic-force microscopy: Rhodopsin dimers in native disc membranes, Nature, vol.39, issue.6919, pp.127-128, 2003.
DOI : 10.1016/S1350-9462(01)00002-7

Y. F. Dufrêne and P. Hinterdorfer, Recent progress in AFM molecular recognition studies, Pfl??gers Archiv - European Journal of Physiology, vol.2, issue.1, pp.237-245, 2008.
DOI : 10.1007/s00424-007-0413-1

T. Uchihashi, High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase, Science, vol.333, issue.6043, pp.755-758, 2011.
DOI : 10.1126/science.1205510

N. Kodera, Video imaging of walking myosin V by high-speed atomic force microscopy, Nature, vol.77, issue.7320, pp.72-76, 2010.
DOI : 10.1038/nature09450

I. Casuso, Characterization of the motion of membrane proteins using high-speed atomic force microscopy, Nature Nanotechnology, vol.133, issue.8, pp.525-529, 2012.
DOI : 10.1073/pnas.0511026103

URL : https://hal.archives-ouvertes.fr/inserm-01363192

I. Casuso, Experimental Evidence for Membrane-Mediated Protein-Protein Interaction, Biophysical Journal, vol.99, issue.7, pp.47-49, 2010.
DOI : 10.1016/j.bpj.2010.07.028

F. Rico, Mechanical Mapping of Single Membrane Proteins at Submolecular Resolution, Nano Letters, vol.11, issue.9, pp.3983-3986, 2011.
DOI : 10.1021/nl202351t

A. Stamouli, The electron conduction of photosynthetic protein complexes embedded in a membrane, FEBS Letters, vol.100, issue.1-3, pp.109-114, 2004.
DOI : 10.1016/S0014-5793(04)00080-8

R. P. Gonçalves, Two-chamber AFM: probing membrane proteins separating two aqueous compartments, Nature Methods, vol.148, issue.12, pp.1007-1012, 2006.
DOI : 10.1038/nmeth965

R. Kassies, Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology, Journal of Microscopy, vol.67, issue.1, pp.109-116, 2005.
DOI : 10.1038/27873

L. N. Liu, Control of electron transport routes through redox-regulated redistribution of respiratory complexes, Proceedings of the National Academy of Sciences, vol.109, issue.28, pp.11431-11436, 2012.
DOI : 10.1073/pnas.1120960109

W. Ryu, Direct Extraction of Photosynthetic Electrons from Single Algal Cells by Nanoprobing System, Nano Letters, vol.10, issue.4, pp.1137-1143, 2010.
DOI : 10.1021/nl903141j