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The chromatophores of Rhodobacter (Rb.) sphaeroides represent aminimal bio-energetic system,which efficient-
ly converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the
morphology and molecular architecture of this elemental energy conversion system remain controversial or
unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy
and atomic force microscopy.We found that the intracellular Rb. sphaeroides chromatophores form a continuous
reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to
fragile chromatophore regions, whichmost likely constitute the tubular structures that interconnect the vesicles
in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally
packedwithin the convex vesicular regions of the membrane network. Based on these observations, we propose
that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes,
which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of
electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2
domains to the RCs.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

All of the components required for anaerobic photosynthesis in the
purple bacteria Rhodobacter (Rb.) sphaeroides are found within special-
ized intracytoplasmic vesicles termed chromatophores. The peripheral
light-harvesting complex 2 (LH2), typically arranged in nonameric
rings, captures photons via non-covalently linked pigments [1]. The
absorbed light energy is then converted into excitation energy and is
transferred from one complex to another on a time scale of picoseconds
[2]. Eventually, it arrives at light-harvesting complex 1 (LH1), which
surrounds the reaction center (RC) [3]. Together, LH1 and the RC form
the so-called core complex [4,5], where charge separation takes place.
Following two photochemical cycles, a quinone is fully reduced to
quinol and diffuses in the membrane plane until it reaches the cyto-
chrome bc1 complex [6]. The dimeric bc1 complex re-oxidizes the
quinol, through a Q-cyclemechanism [7], and the electrons are shuttled
back via soluble cytochrome c2 to the RC. Concomitantly, the bc1
ing).
science Building, University of
complex liberates protons into the internal chromatophore lumen,
which are utilized by ATP synthase to generate ATP [8].

While the composition of Rb. sphaeroides photosynthetic apparatus
and the structure of its individual pigment–protein complexes are
well characterized, some key issues pertaining to its macroscopic orga-
nization and the details of its operation remain unclear. Nowadays, the
view that the chromatophores in Rb. sphaeroides exist as discrete vesi-
cles is often accepted. However, historically, connectivity between the
vesicular chromatophores has been proposed as early as 1965 based
on electron microscopy and biochemical analysis [9–11]. The organiza-
tion of the chromatophoremembranes either as discrete vesicles or as a
connected reticulumor network should have important implications for
its function, maintenance as well as for its biogenesis. The supramolec-
ular organization of the complexes that mediate light harvesting and
electron transport is likewise under debate, and so is the contribution
of the different complexes to themembrane curvature required to initi-
ate budding of the chromatophores from the cellmembrane fromwhich
they originate [12–14]. Atomic force microscopy (AFM) has been per-
formed on chromatophores of various species, and proved invaluable
for elucidating the organization of the light-harvesting apparatus (for
a review, see [15]). Polarized spectroscopy and modeling have likewise
made important contributions to our understanding of the supramolec-
ular organization of the Rb. sphaeroides chromatophore system and its
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biogenesis [16,17]. However, there are still unanswered questions
concerning the supramolecular organization of the complexes,
particularly in the case of Rb. sphaeroides, where the vesicular
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structures need to be flattened for AFM analysis [18–20]. Finally,
until very recently, the localization of the bc1 complex within the
chromatophore membranes has been unknown, in all anaerobic
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phototrophs [20,21], including Rb. sphaeroides [18]. While submitting
this manuscript, we became aware of another study [22], in which the
bc1 complex was localized in isolated Rb. sphaeroides chromatophores.

In order to address the above issues, we combined electron micro-
scope tomography (EMT), immuno-electron microscopy (immuno-EM),
as well as AFM analysis of native chromatophoremembranes. The results
obtained from the studies shed new light on the organization of the
chromatophore membranes of Rb. sphaeroides and on the organization
of the protein complexes within them, providing important insight into
their function.

2. Results

To study the morphology of Rb. sphaeroides chromatophores in three
dimensions in situ, we performed dual-axis EMT analysis on sections
obtained from high-pressure frozen, freeze-substituted samples, as
described [23–26]. As can be seen (Fig. 1A), the inner and outer cellmem-
branes arewell resolved in the tomograms. The twomembranes (Fig. 1B)
are separated from each other by about 5 nm and have an apparent
thickness of ~7 and ~5 nm, respectively (Fig. 1C). The inner membrane
appears significantly denser than the outer, likely due to the high density
of peripheral proteins in the former. The chromatophores seen in the
tomographic slices (Fig. 1D) appear as separate spherical objects averag-
ing 50 ± 20 nm in diameter. This conforms to the view that the chro-
matophores in Rb. sphaeroides exist primarily as discrete, autonomous
bodies. However, following segmentation and rendering of the recon-
structed volume, it becomes clear that the chromatophores are, in
fact, fused to each other at different, often multiple, points, with the
connecting regions varying in diameter (Fig. 1E). The result is a continu-
ous, three-dimensional (3D) vesiculated network or reticulum that per-
sists throughout the entire cytoplasmic space and occupies a significant
fraction of its volume. In contrast to the results obtained in a recent
cryo-EMT study [14], we did not detect connections between the inner
cellmembrane and the chromatophoremembranes. In their report, Tuck-
er et al. proposed that the number of connections between the chromato-
phores and the cell membranemay depend on growth light intensity and
developmental state. The absence of such connections in our samples
may be due to the fact that the cells examined by us had fully matured
chromatophoremembranes,whereas the chromatophores in the cells ex-
amined by Tucker et al. appear to be in an earlier developmental stage
(see Fig. 6 in Ref. [14]). It is also possible, however, that we did not detect
chromatophore–cell membrane connections because these were poorly
contrasted by heavy metal staining of the freeze-substituted samples.

We also addressed the issue of where the cytochrome bc1 complex
is localized in the chromatophore membranes. As mentioned in the
Introduction, the localization of this complex, along with that of the
ATP synthase, within the photosynthetic membranes of anoxygenic
phototrophs remains enigmatic (for a review see [20]; but see Cartron
et al. [22] in this issue). Recently, we were able to demonstrate pos-
sible long-range quinone pathways in the lamellar chromatophores
of Rhodospirillum (Rsp.) photometricum [21]. Within this framework,
the bc1 complex was postulated to localize at the edges of the lamellae
and at invagination sites of the chromatophore membranes [21]. Fol-
lowing similar considerations, the bc1 complex of Blastochloris (Blc.)
viridis was likewise proposed to be located at the highly curved edges
of the lamellar stacks that constitute the chromatophore unit of this
organism [27]. To obtain information on the localization of the bc1
Fig. 1.Architecture of the cell and chromatophoremembranes of Rb. sphaeroides. A) Tomograph
outer membranes are clearly discernable. B) The cell membranes as seen in a thicker (33 nm)
brane, the permeability barrier, appears much more contrasted than the porin-dense outer m
(B). The measured thicknesses of the inner and outer membranes are ~7 nm and ~5 nm, respe
the vesicular appearance of intracytoplasmic membranes in Rb. sphaeroides when visualized
observed (dashed outlines). E) Model, generated from the tomographic data, showing the ce
Inset: A slice through the 3D model along the dashed line shown in the main panel, showing
each other at multiple points, forming a continuous tubular network or reticulum within the c
complex in Rb. sphaeroides chromatophores, we performed immuno-
EM analysis of isolated chromatophores; attempts to label the complex
on sections obtained from cell suspensions unfortunately failed. The
isolation and EM preparation procedures resulted in breakage of the
connections between the chromatophores, yielding separate vesicles
(Fig. 2A). Four labeling patterns were observed: (i) the gold particle
was on top of the chromatophore vesicle (termed ‘vesicle’, 1st column
in Fig. 2A), (ii) the label was on a membrane structure that protrudes
out of the vesicle (‘neck’, 2nd column in Fig. 2A), (iii) the label was on
a small membrane fragment (‘fragment’, 3rd column in Fig. 2A) and
(iv) two closely associated gold particles (‘aggregates’, 4th column in
Fig. 2A). The relative abundance of these labeling characteristics (n =
260) was: ‘vesicle’: 15.0% ± 2.4%; ‘neck’: 35.8% ± 3.7%; ‘fragment’:
39.2% ± 3.9%; and ‘aggregates’: 5.0% ± 1.4% (Fig. 2B). This distribution
suggests that the bc1 complex resides primarily in fragile membrane
regions, accounting for the fact that a total of ~45% (‘fragment’+ ‘ag-
gregates’) of the labels were present on small, dissociated membrane
fragments and that an additional 36% of the labels were present on
membrane regions that protruded out of the vesicles (‘necks’). Assum-
ing that the ‘fragment’ and ‘aggregate’ fractions were neck regions that
had detached from the main chromatophore body during isolation or
preparation for EM, about 80% of the labels thus represent neck regions.
We further propose that at least some of the labels seen on the main
vesicle body (Fig. 2A, 1st column) correspond to neck regions that had
collapsed onto the vesicle surface.

In order to obtain information on the molecular constituents and
organization of chromatophore membranes, we performed AFM analy-
sis on isolated vesicles. To maximally preserve their native state, the
analysis was performed on samples that were not pre-treated with de-
tergent. Imaging the vesiculated chromatophores (Fig. 3A) was very
challenging and required particular attention to the force applied to
the sample [28–32]. Despite these efforts, imaging of large membrane
areas was not possible and the resolution was partially compromised,
when compared to samples from specieswith lamellar intracytoplasmic
membranes such as Rhodopseudomonas (Rps.) viridis [33], Rsp.
photometricum [21,34–38], and Rhodopseudomonas palustris [39].
Rather, we were only able to visualize small membrane patches at
peripheral regions of the vesicles close to the support surface, probably
because of the greater membrane stiffness of these regions compared
to the dome regions. Although the resolution we obtained was lower
than that obtained for intracytoplasmic membranes of other species
[20], we were nonetheless able to reproducibly detect molecular clus-
ters consisting of about ten protein complexes. A frequently observed
assembly pattern at the highly curved peripheral membrane regions
was that of hexagonally packed LH2 complexes (Fig. 3B), similar to
what we had observed in Rsp. photometricum [34] and Phaeospirillum
molischianum [31]. This arrangement has been suggested by molecular
dynamics simulations (MDS) to induce membrane curvature in vesicu-
lated chromatophores [40]. It is also known that, in Rb. sphaeroides, LH2
complexes are sufficient to inducemembrane curvature and indeed can
assemble chromatophores in core-deficient mutants [41]. Rarely, we
detected LH2 assemblies significantly larger than the typically observed
nonameric form, possessing a ring diameter of about 100 Å (Fig. 3B,
arrow), as found in Rsp. photometricum [34] and Phsp. molischianum
[31]. No indication for the presence of LH2 dimers [18,32,42] or RC–
LH1–PufX dimer rows [18] was obtained from the membrane regions
observed in this study.
ic slice (5.5-nm thick) depicting themembranes of two Rb. sphaeroides cells. The inner and
slice perpendicular to the membrane plane of the reconstructed volume. The inner mem-
embrane. C) Gray-scale profile taken across the cell membranes along the dashed line in
ctively. D) A series of slices at different z-positions of the tomographic volume illustrating
in 2D. Nonetheless, interconnections between neighboring chromatophore bodies are
ll and chromatophore membranes (colored in light green and brown-red, respectively).
only the chromatophore membranes. As can be seen, the chromatophores are fused to
ell.
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3. Discussion

In this studywe combined several imaging techniques to characterize
the morphology and ultrastructure of the chromatophore membranes of
Rb. sphaeroides. The results we obtained from the EMT studies indicate
that the chromatophore vesicles of Rb. sphaeroides are fused to each
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Fig. 3. Organization of protein complexes in the intracytoplasmic membranes of Rb. sphaeroide
vesicular chromatophores adsorbed to a mica support. As no detergent was added, the chrom
substrate. B) Molecular-resolution topographs showing assemblies of core and LH2 complexe
LH2 complexes can be seen (arrow).
other at multiple points by membrane constrictions, forming a continu-
ous reticulum that encloses a single luminal space, similar to the organi-
zation of oxygenic photosynthetic (thylakoid) membranes [23–25,43].
Such connectivity is advantageous as it allows the system to respond to
internal or external cues in a concerted manner. It also simplifies the
trafficking of material into or out of the system, as only a few entry or
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s visualized in isolated chromatophores. A) Low-magnification AFM topograph of purified
atophores preserved their native spherical shape and did not flatten on the supporting
s. The latter often exhibit hexagonal arrangement (dashed outlines). Occasionally larger
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exit points are required, therefore simplifying its formation and mainte-
nance. The fact that, rather than existing as isolated spherical bodies,
the chromatophores of Rb. sphaeroides are organized in complex reticular
networks may also have important implications for studies aiming at
modeling light harvesting and electron transport in the chromatophore
system, aswell as the conversion of the captured light energy to chemical
energy through the dissipation of transmembrane proton motive force
generated during the transport reactions (e.g., [17,44]).

Despite early reports suggesting an interconnected chromatophore
system in purple bacteria [11,45], in recent years the concept of discrete
chromatophore vesicles has prevailed [44]. This view gained substantial
support from 2D projection images obtained from thin-section electron
micrographs of cells or isolated chromatophores [9,10,12–14,46]. As the
number of connections present between neighboring vesicles is small
and as they are apparently randomly oriented, in projection, the chro-
matophores would appear mostly as separate, circularly delineated
objects. Indeed, when single tomographic slices are examined, the
chromatophores appear mostly as isolated vesicles (Fig. 1D); their
interconnected nature is best revealed when volume rendering and
segmentation of the tomographic volume is carried out. In addition,
the connections that link the chromatophores to each other likely
break during isolation, as we observed when we prepared the samples
for the immuno-EM and AFM studies. This is probably the case also for
the connections between the chromatophores and the cytoplasmic
membrane, as these are likely to be very labile as well ([14] and refer-
ences therein).

Recently, Tucker and co-workers employed cryo-electron tomogra-
phy to study chromatophore development in Rb. sphaeroides [14].
While tomograms were acquired on both thin/semi-thick sections and
whole cells, segmentation and volume rendering of the chromatophores
were performed only on tomograms recorded from the whole-cell
samples, in which high-resolution information could be extracted only
for regions adjacent to the cell membrane. In the latter case, the authors
did observe some fused chromatophore clusters, but these clusters
were proposed to represent secondary budding events that take place
during biogenesis and that eventually break apart upon maturation.
Inspecting a tomogram acquired by the authors from a semi-thick vitre-
ous section (Supplemental movie S1 in [14]), where the chromatophores
arewell resolved throughout the cell volume, it appears that they are con-
nected to each other in the central regions of the cell (where they should
assume their final, mature form), similar to what we observed. It is thus
likely that connectivity between chromatophores is a general feature of
Rb. sphaeroides. As proposed by Tucker et al. for the connections between
the chromatophores and the cell membrane, we propose that the extent
of connectivity of the chromatophore network may also vary with light
and/or other growth conditions.

Electron transport in the chromatophores requires the presence of
cytochrome bc1. While it has been suggested that the bc1 complex is
closely associated with the RC [47], its exact localization in the chro-
matophore membranes of Rb. sphaeroides or in the photosynthetic
membranes of other anoxygenic phototrophs has remained elusive
until now (see below). Here we were able to label cytochrome bc1
complexes in isolated chromatophore membranes. Although the
preparation of the chromatophore vesicles resulted in breakage of the
connections between the chromatophore vesicles, complicating the
analysis, the labeling patterns observed strongly suggest that the com-
plexes localize to the fragile membrane regions that interconnect the
chromatophores in the network. We have recently proposed that bc1
resides at the peripheral edges of the chromatophore membranes of
Rsp. photometricum [21]. Likewise, structural and spectroscopic analyses
of the intracytoplasmic photosynthetic membranes of Blc. viridis led
Konorty et al. [27] to suggest that bc1 complexes are localized to the
edges of the stacked lamellar sheets into which these membranes
are organized. Most recently, EM and AFM combined with bc1 gold
labeling, has been performed to analyze the bc1 localization within
Rb. sphaeroides chromatophores [22]. It was concluded that the bc1
complex mostly exists as dimers and resides adjacent to RC–LH1–PufX
complexes.

AFM analysis of purified chromatophores revealed the typical vesic-
ular morphology of isolated chromatophores, as documented previous-
ly by EM [9]. Earlier, the chromatophores of Rb. sphaeroides had been
studied by AFM using a sample preparation technique that takes advan-
tage of sub-solubilizing amounts of detergent to open and flatten the
vesicles on the AFM mica support [18]. Here, we avoided any strategy
for vesicle opening or flattening [19], limiting imaging resolution and
the possibility to visualize large areas. Despite these limitations, we
could acquire somemolecular details on the spherical chromatophores,
notably the hexagonal arrangement of LH2 complexes. Based on our
data, we cannot confirm clustering of dimeric core complexes in arrays,
as previously reported [17,18,44]. We only visualized few core com-
plexes, some dimeric, as expected [48–50], and some apparently
monomeric.

Finally, we propose a model for the organization of the photosyn-
thetic protein complexes within the chromatophore network of Rb.
sphaeroides. In constructing the model, we took into account the local
curvature of themembranes, as derived from surface curvature analysis
of the reconstructed chromatophore reticulum (Fig. 4), the localization
of cytochrome bc1 suggested by the immuno-EM data, the apparent
preference of the reaction center and LH2 complexes for convex mem-
brane domains [40,41,51–53], and the assumption that, for optimal effi-
ciency, the reaction centers should lie in close proximity to both LH2
and cytochrome bc1 complexes. In light of these, we propose that the cy-
tochrome bc1 complexes reside primarily in the concave and relatively
flat ‘neck’ regions that interconnect the chromatophores in the network
(Fig. 4, blue and white regions). These foci are surrounded by the RC–
LH1–PufX core complexes (white regions and adjacent red regions), en-
suring that diffusion distances of quinones/quinols and cytochrome c2
proteins, which mediate electron transport between the reaction cen-
ters and the cytochrome bc1 complexes, are minimized. The rest of the
reticulum (red), which consists of high-curvature convex membrane
domains, is occupied by LH2 complexes, consistent with these com-
plexes being the most abundant components of the apparatus and
their proposed role in membrane bending by molecular dynamics sim-
ulations [52]. This concentric arrangement should enable efficient
cycling of electrons between the reaction centers and cytochrome bc1
complexes without disturbing the transfer of excitation energy from
the peripheral antennae to the reaction centers. The short distances be-
tween bc1 complexes and RCs as predicted by themodel (ca. 10 nm) are
consistent with a previous work in which electron transport rates were
estimated in Rhodobacter capsulatus containing different bc1 fusions
[54]. It is therefore expected to allow for efficient funneling of excitation
energy to discrete, small loci that contain RC–LH1–PufX, quinones/
quinols, cytochrome c2, and cytochrome bc1, minimizing the space for
the diffusive electron transfer reactions that limit the overall rate of
the process and, therefore, maximizing its speed and efficiency.

Our molecular model is essentially in agreement with the recent
analysis of Cartron and colleagues [22], connecting the core complexes
on one side to LH2 and on the other side to cytochrome bc1 complexes,
hence spatially separating excitation from electron transfer. It was ob-
served by Cartron et al. [22], that the labels of the bc1 complexes ap-
peared mostly in clusters. This, too, is consistent with our model in
which the bc1 complexes localize to the regions that interconnect the
vesicles in the reticulum. Since these fragile regions break during chro-
matophore isolation, the appearance of clustered bc1 labeling would be
expected. This is especially evident in the labeling of flattened isolated
chromatophore vesicles in their work. As Cartron et al. utilized a 10-
His–bc1 fusion strain for their labeling, they had the advantage of
being able to achieve multiple labeling, including dimeric complexes.
We note that our labeling pattern, which was carried out with an anti-
body against a part of native bc1 and thus may have not been able
to double-label dimeric complexes due to steric problems, does not
exclude the possibility that the complexes exist as dimers in the
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membranes. However, our models differ with regard to the overall
chromatophore organization in vivo, vesicles versus a reticulated sys-
tem. Both models fail to account for functional measurements suggest-
ing slow electron transfer rate in LH2 enriched membranes [55], as the
LH2s should be confined to membrane regions that are not perfused
by electron carriers.
4. Materials and methods

4.1. Growth and harvesting

Rb. sphaeroides Ga strain cells were grown anaerobically in modified
Hutner medium [56] with illumination from a tungsten lamp at a mod-
erate light-intensity of ~30W/m2, and harvested in late log phase. Prior
to preparation for the EM examinations, the cells were washed two
times with cold 10 mM Tris–HCl pH 8.0.
4.2. Transmission electron microscopy and tomography

Sample preparation, imaging, and data processingwere as described
in [24]. Dual-axis electron tomography was performed on semi-thick
sections obtained from high-pressure frozen, freeze-substituted sam-
ples, as described in [23–26]. For a recent comparison of images obtain-
ed by this method to those recorded by cryo-EM on vitreous sections,
see Kirchhoff et al. [57]. Segmentation and surface rendering of the
cells and chromatophore membranes were performed using JAVA
routines [58] for the Image-J image processing platform [59].
4.3. Chromatophore purification and purified chromatophore analysis

Chromatophores were isolated as described previously [60] from Rb.
sphaeroides Ga strain grown to late log phase. Cells were collected and
washed in 1mMTris–HCl (pH 7.5), and resuspended in the samebuffer.
DNAase (0.1 mg/ml final concentration) was added to the cell slurry
that was subsequently passed (once) through a French pressure cell op-
erating at 1000 psi. The lysate (collected on ice) was centrifuged briefly
(15 min at 2500 g) to remove unbroken cells prior to layering on a con-
tinuous 5–35% sucrose density gradient poured over a 60% sucrose
cushion and centrifuged for 90 min at 27,000 rpm in a SW28 rotor.
Chromatophores were isolated from a strongly colored band at about
25% sucrose. The sucrose was then removed from the chromatophore
suspension by two-fold dilution with 1 mM Tris–HCl (pH 7.5) and
pelleting by ultra-centrifugation.
4.4. Atomic force microscopy

Nanoscope-E and Nanoscope-V AFMs [61] (Bruker, Santa Barbara,
CA, USA), equipped with a 160-μm scanner (J-scanner) and oxide-
sharpened Si3N4 cantilevers (length 100 μm; k = 0.09 N/m; Olympus
Ltd., Tokyo, Japan) were operated in contact mode at ambient tempera-
ture and pressure. For imaging,minimal loading forces of ~100 pNwere
applied, at scan frequencies of 4–7Hz, using optimized feedbackparam-
eters. The mica supports were immersed in 40 μl of adsorption buffer
(10 mM Tris–HCl, 150 mM KCl, 25 mM MgCl2, pH 7.5). Subsequently,
2 μl of a solution containing isolated chromatophore membranes was
injected into the buffer drop. After one hour or so the samplewas rinsed
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with recording buffer (10 mM Tris–HCl, 150 mM KCl, pH 7.5) before
imaging.

4.5. Immuno-electron microscopy

Antibodies against the cytochrome bc1 complex were provided by
Eurogentec (Seraing, Belgium). These antibodies were raised against
two peptides (CYYGSYKPPREVLW and CSNNPLGIDAKGPFDT), cor-
responding to regions present within the putative cytoplasmic
loops of the cytochrome b subunit of Rhodospirillum rubrum. Several
parts of these sequences are well conserved in the cytochrome b of Rb.
sphaeroides, and the antibodies detect the cytochrome b of Rb. sphaeroides
inWestern blots (not shown). All steps of the immuno-labelingwere car-
ried out at room temperature in a closed and humidified environment by
floating grids on drops of the different solutions. Purified chromatophore
samples of Rb. sphaeroides (5 μl)were adsorbed onto carbon-coated, glow
discharged copper grids (300 mesh, EMS, Hatfield, USA) for 5 min. The
adsorbed Rb. sphaeroides chromatophores were washed twice with PBS
containing 1% BSA, to remove unadsorbed membranes. The grids were
then incubated for 30 min with anti-cytochrome bc1 diluted 1/100, 1/
200 and 1/300 times in PBS containing 1% BSA buffer. Negative control
was performed by incubation with pre-immune serum for 30 min. All
grids were then washed (5×) with PBS containing 0.1% BSA and were
then incubated with gold-labeled protein A (10 nm; CMC, Utrecht,
Netherlands; 1/75) for 20 min. The grids were then washed with PBS/
0.1% BSA, then with only PBS and, finally, with water. Samples were
stained for 30 s with 2% uranyl acetate andwere visualized with a Philips
CM12 operating at 120 kV.
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