X. An, V. P. Schulz, J. Li, K. Wu, J. Liu et al., Global transcriptome analyses of human and murine terminal erythroid differentiation, Blood, vol.123, issue.22, pp.3466-3477, 2014.
DOI : 10.1182/blood-2014-01-548305

M. Beck, A. Schmidt, J. Malmstroem, M. Claassen, A. Ori et al., The quantitative proteome of a human cell line, Molecular Systems Biology, vol.5, issue.1, p.549, 2011.
DOI : 10.1002/1522-2683(200209)23:18<3205::AID-ELPS3205>3.0.CO;2-Y

N. M. Burton and L. J. Bruce, Modelling the structure of the red cell membraneThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting ??? Membrane Proteins in Health and Disease, and has undergone the Journal???s usual peer review process., Biochemistry and Cell Biology, vol.89, issue.2, pp.200-215, 2011.
DOI : 10.1139/O10-154

L. Casetti, S. Martin-lanneré-e, I. Najjar, I. Plo, S. Augé et al., Differential Contributions of STAT5A and STAT5B to Stress Protection and Tyrosine Kinase Inhibitor Resistance of Chronic Myeloid Leukemia Stem/Progenitor Cells, Cancer Research, vol.73, issue.7, pp.2052-2058, 2013.
DOI : 10.1158/0008-5472.CAN-12-3955

D. Costa, L. Mohandas, N. Sorette, M. Grange, M. J. Tchernia et al., Temporal differences in membrane loss lead to distinct reticulocyte features in hereditary spherocytosis and in immune hemolytic anemia, Blood, vol.98, issue.10, pp.2894-2899, 2001.
DOI : 10.1182/blood.V98.10.2894

C. R. Edwards, W. Ritchie, J. J. Wong, U. Schmitz, R. Middleton et al., A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages, Blood, vol.127, issue.17, pp.24-34, 2016.
DOI : 10.1182/blood-2016-01-692764

J. M. Freyssinier, C. Lecoq-lafon, S. Amsellem, F. Picard, R. Ducrocq et al., Purification, amplification and characterization of a population of human erythroid progenitors, British Journal of Haematology, vol.80, issue.4, pp.912-922, 1999.
DOI : 10.1016/0092-8674(95)90234-1

T. Fujiwara, H. O-'geen, S. Keles, K. Blahnik, A. K. Linnemann et al., Discovering Hematopoietic Mechanisms through Genome-wide Analysis of GATA Factor Chromatin Occupancy, Molecular Cell, vol.36, issue.4, pp.667-681, 2009.
DOI : 10.1016/j.molcel.2009.11.001

M. C. Giarratana, H. Rouard, A. Dumont, L. Kiger, I. Safeukui et al., Proof of principle for transfusion of in vitro-generated red blood cells, Blood, vol.118, issue.19, pp.5071-5079, 2011.
DOI : 10.1182/blood-2011-06-362038

URL : https://hal.archives-ouvertes.fr/hal-00692474

S. M. Hattangadi, S. Martinez-morilla, H. C. Patterson, J. Shi, K. Burke et al., Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation, Blood, vol.124, issue.12, 1931.
DOI : 10.1182/blood-2013-11-537761

V. Hvidberg, M. B. Maniecki, C. Jacobsen, P. Højrup, H. J. Møller et al., Identification of the receptor scavenging hemopexin-heme complexes, Blood, vol.106, issue.7, pp.2572-2579, 2005.
DOI : 10.1182/blood-2005-03-1185

M. T. Kassouf, J. R. Hughes, S. Taylor, S. J. Mcgowan, S. Soneji et al., Genome-wide identification of TAL1's functional targets: Insights into its mechanisms of action in primary erythroid cells, Genome Research, vol.20, issue.8, pp.1064-1083, 2010.
DOI : 10.1101/gr.104935.110

M. S. Kim, S. M. Pinto, D. Getnet, R. S. Nirujogi, S. S. Manda et al., A draft map of the human proteome, Nature, vol.41, issue.7502, pp.575-581, 2014.
DOI : 10.1038/nature13302

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang et al., Profiling individual human red blood cells using common-path diffraction optical tomography, Scientific Reports, vol.185, p.6659, 2014.
DOI : 10.1038/srep06659

P. D. Kingsley, E. Greenfest-allen, J. M. Frame, T. P. Bushnell, J. Malik et al., Ontogeny of erythroid gene expression, Blood, vol.121, issue.6, pp.5-13, 2013.
DOI : 10.1182/blood-2012-04-422394

N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells, Nature Methods, vol.11, issue.3, pp.319-324, 2014.
DOI : 10.1021/pr101065j

P. F. Lange, P. F. Huesgen, K. Nguyen, and C. M. Overall, Annotating N Termini for the Human Proteome Project: N Termini and N??-Acetylation Status Differentiate Stable Cleaved Protein Species from Degradation Remnants in the Human Erythrocyte Proteome, Journal of Proteome Research, vol.13, issue.4, pp.2028-2044, 2014.
DOI : 10.1021/pr401191w

J. Li, J. Hale, P. Bhagia, F. Xue, L. Chen et al., Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E, Blood, vol.124, issue.24, pp.3636-3645, 2014.
DOI : 10.1182/blood-2014-07-588806

M. Mann, Functional and quantitative proteomics using SILAC, Nature Reviews Molecular Cell Biology, vol.295, issue.12, pp.952-958, 2006.
DOI : 10.1038/nrm2067

P. Mayeux, C. Billat, J. M. Felix, and R. Jacquot, Evidence for glucocorticosteroid receptors in the erythroid cell line of fetal rat liver, Journal of Endocrinology, vol.96, issue.2, pp.311-319, 1983.
DOI : 10.1677/joe.0.0960311

P. Mayeux, C. Billat, and R. Jacquot, The erythropoietin receptor of rat erythroid progenitor lens. Characterization and affinity cross-linkage, J. Biol. Chem, vol.262, pp.13985-13990, 1987.

A. T. Merryweather-clarke, A. Atzberger, S. Soneji, N. Gray, K. Clark et al., Global gene expression analysis of human erythroid progenitors, Blood, vol.117, issue.13, pp.96-108, 2011.
DOI : 10.1182/blood-2010-07-290825

A. Montel-hagen, S. Kinet, N. Manel, C. Mongellaz, R. Prohaska et al., Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C, Cell, vol.132, issue.6, pp.1039-1048, 2008.
DOI : 10.1016/j.cell.2008.01.042

A. M. Pilon, S. S. Ajay, S. A. Kumar, L. A. Steiner, P. F. Cherukuri et al., Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation, Blood, vol.118, issue.17, pp.139-148, 2011.
DOI : 10.1182/blood-2011-05-355107

H. Pimentel, M. Parra, S. Gee, D. Ghanem, X. An et al., A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis, Nucleic Acids Research, vol.42, issue.6, pp.4031-4042, 2014.
DOI : 10.1093/nar/gkt1388

H. Pimentel, M. Parra, S. L. Gee, N. Mohandas, L. Pachter et al., A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis, Nucleic Acids Research, vol.44, issue.2, pp.838-851, 2016.
DOI : 10.1093/nar/gkv1168

L. Shi, Y. H. Lin, M. C. Sierant, F. Zhu, S. Cui et al., Developmental transcriptome analysis of human erythropoiesis, Human Molecular Genetics, vol.23, issue.17, pp.4528-4542, 2014.
DOI : 10.1093/hmg/ddu167

C. Vogel and E. M. Marcotte, Insights into the regulation of protein abundance from proteomic and transcriptomic analyses, Nature Reviews Genetics, vol.285, pp.227-232, 2012.
DOI : 10.1038/nrg3185

J. R. Wi-sniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nature Methods, vol.6, issue.5, pp.359-362, 2009.
DOI : 10.1038/nmeth.1322

J. R. Wi-sniewski, M. Y. Hein, J. Cox, and M. Mann, A ???Proteomic Ruler??? for Protein Copy Number and Concentration Estimation without Spike-in Standards, Molecular & Cellular Proteomics, vol.13, issue.12, pp.3497-3506, 2014.
DOI : 10.1074/mcp.M113.037309

Y. Zermati, C. Garrido, S. Amsellem, S. Fishelson, D. Bouscary et al., Caspase Activation Is Required for Terminal Erythroid Differentiation, The Journal of Experimental Medicine, vol.112, issue.2, pp.247-254, 2001.
DOI : 10.1084/jem.190.12.1725

J. Zhang, M. Socolovsky, A. W. Gross, and H. F. Lodish, Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system, Blood, vol.102, issue.12, pp.3938-3946, 2003.
DOI : 10.1182/blood-2003-05-1479