J. Viñuelas, G. Kaneko, A. Coulon, G. Beslon, and O. Gandrillon, Towards experimental manipulation of stochasticity in gene expression, Fig. 6 Schematic diagram of the linear in silico activation pathway of CD8 + T cells, pp.44-53, 2012.
DOI : 10.1016/j.pbiomolbio.2012.04.010

E. Terry, J. Marvel, C. Arpin, O. Gandrillon, and F. Crauste, Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system, Journal of Mathematical Biology, vol.12, issue.22, pp.263-91, 2012.
DOI : 10.1007/s00285-011-0459-8

URL : https://hal.archives-ouvertes.fr/hal-00649219

F. Crauste, E. Terry, I. Mercier, J. Mafille, S. Djebali et al., Predicting pathogen-specific CD8 T cell immune responses from a modeling approach, Journal of Theoretical Biology, vol.374, pp.66-82, 2015.
DOI : 10.1016/j.jtbi.2015.03.033

URL : https://hal.archives-ouvertes.fr/hal-01242319

R. De-boer, D. Homann, and A. Perelson, Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection, The Journal of Immunology, vol.171, issue.8, pp.3928-3963, 2003.
DOI : 10.4049/jimmunol.171.8.3928

R. Antia, S. Pilyugin, and R. Ahmed, Models of immune memory: On the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.14926-14957, 1998.
DOI : 10.1073/pnas.95.25.14926

O. Feinerman, G. Jentsch, K. Tkach, J. Coward, M. Hathorn et al., Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response, Molecular Systems Biology, vol.175, 2010.
DOI : 10.1038/ng1958

S. Kaech, E. Wherry, and R. Ahmed, VACCINES: EFFECTOR AND MEMORY T-CELL DIFFERENTIATION: IMPLICATIONS FOR VACCINE DEVELOPMENT, Nature Reviews Immunology, vol.166, issue.4, pp.251-62, 2002.
DOI : 10.1046/j.1365-2249.2001.01600.x

A. Lanzavecchia and F. Sallusto, Lead and follow: the dance of the dendritic cell and T cell, Nature Immunology, vol.156, issue.12, pp.1201-1203, 2004.
DOI : 10.1038/79758

H. Yoon, T. Kim, and T. Braciale, The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is Controlled by the Type of Antigenic Stimulus, PLoS ONE, vol.35, issue.11, 2010.
DOI : 10.1371/journal.pone.0015423.s003

D. Dieckmann, C. Bruett, H. Ploettner, M. Lutz, and G. Schuler, Regulatory, Contact-dependent T Cells Induce Interleukin 10???producing, Contact-independent Type 1-like Regulatory T Cells, The Journal of Experimental Medicine, vol.93, issue.2, pp.247-53, 2002.
DOI : 10.4049/jimmunol.164.1.183

V. Folcik, G. An, and C. Orosz, The Basic Immune Simulator: An agent-based model to study the interactions between innate and adaptive immunity, Theoretical Biology and Medical Modelling, vol.4, issue.1
DOI : 10.1186/1742-4682-4-39

J. Beltman, A. Marée, and R. De-boer, Spatial modelling of brief and long interactions between T cells and dendritic cells, Immunology and Cell Biology, vol.166, issue.4, pp.306-320, 2007.
DOI : 10.1016/j.immuni.2004.08.006

T. Riggs, A. Walts, N. Perry, L. Bickle, J. Lynch et al., A comparison of random vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire scanning, Journal of Theoretical Biology, vol.250, issue.4, pp.732-51, 2008.
DOI : 10.1016/j.jtbi.2007.10.015

C. Gong, J. Mattila, M. Miller, J. Flynn, J. Linderman et al., Predicting lymph node output efficiency using systems biology, Journal of Theoretical Biology, vol.335, pp.169-84, 2013.
DOI : 10.1016/j.jtbi.2013.06.016

G. Bogle and P. Dunbar, Agent-based simulation of T-cell activation and proliferation within a lymph node, Immunology and Cell Biology, vol.2, issue.2, pp.172-181, 2010.
DOI : 10.1038/icb.2009.78

V. Baldazzi, P. Paci, M. Bernaschi, and F. Castiglione, Modeling lymphocyte homing and encounters in lymph nodes, BMC Bioinformatics, vol.10, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1471-2105-10-387

URL : https://hal.archives-ouvertes.fr/hal-00784447

D. Santoni, M. Pedicini, and F. Castiglione, Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hypersensitivity reactions, Bioinformatics, vol.24, issue.11, pp.1374-80, 2008.
DOI : 10.1093/bioinformatics/btn135

A. Cappuccio, P. Tieri, and F. Castiglione, Multiscale modelling in immunology: a review, Briefings in Bioinformatics, vol.17, issue.3
DOI : 10.1093/bib/bbv012

F. Zhang, B. Angermann, and M. Meier-schellersheim, The Simmune Modeler visual interface for creating signaling networks based on bi-molecular interactions, Bioinformatics, vol.29, issue.9, pp.1229-1259, 2013.
DOI : 10.1093/bioinformatics/btt134

J. Von-eichborn, A. Woelke, F. Castiglione, and R. Preissner, VaccImm: simulating peptide vaccination in cancer therapy, BMC Bioinformatics, vol.14, issue.1, pp.127-137, 2013.
DOI : 10.1038/nm0597-505

S. Palsson, T. Hickling, E. Bradshaw-pierce, M. Zager, K. Jooss et al., The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models, BMC Systems Biology, vol.7, issue.1, pp.95-105, 2013.
DOI : 10.1371/journal.pcbi.1000403

F. Castiglione, F. Mantile, D. Berardinis, P. Prisco, and A. , How the Interval between Prime and Boost Injection Affects the Immune Response in a Computational Model of the Immune System, Computational and Mathematical Methods in Medicine, vol.57, issue.2, pp.842329-842339, 2012.
DOI : 10.1016/j.jtbi.2004.06.031

N. Rapin, O. Lund, M. Bernaschi, and F. Castiglione, Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System, PLoS ONE, vol.5, issue.4, 2010.
DOI : 10.1371/journal.pone.0009862.t003

F. Mitha, T. Lucas, F. Feng, T. Kepler, and C. Chan, The Multiscale Systems Immunology project: software for cell-based immunological simulation, Source Code for Biology and Medicine, vol.3, issue.1, pp.6-10, 2008.
DOI : 10.1186/1751-0473-3-6

Y. Mei, V. Abedi, A. Carbo, X. Zhang, P. Lu et al., Multiscale modeling of mucosal immune responses, BMC Bioinformatics, vol.16, issue.Suppl 12, 2015.
DOI : 10.1038/ni1539

Q. Wang, D. Klinke-2nd, and Z. Wang, CD8 + T cell response to adenovirus vaccination and subsequent suppression of tumor growth: modeling, simulation and analysis, BMC Systems Biology, vol.515, issue.81, pp.27-37, 2015.
DOI : 10.1186/s12918-015-0168-9

X. Chen, T. Hickling, and P. Vicini, A Mechanistic, Multiscale Mathematical Model of Immunogenicity for Therapeutic Proteins: Part 1???Theoretical Model, CPT Pharmacometrics Syst. Pharmacol., vol.160, issue.9, 2014.
DOI : 10.1371/journal.pbio.0000010

C. Sershen, S. Plimpton, and E. May, Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach, Frontiers in Cellular and Infection Microbiology, vol.66, 2016.
DOI : 10.1016/S0034-5687(99)00084-5

M. Miller, S. Wei, I. Parker, and M. Cahalan, Two-Photon Imaging of Lymphocyte Motility and Antigen Response in Intact Lymph Node, Science, vol.296, issue.5574, pp.1869-73, 2002.
DOI : 10.1126/science.1070051

M. Miller, O. Safrina, I. Parker, and M. Cahalan, T Cell Activation by Dendritic Cells in Lymph Nodes, The Journal of Experimental Medicine, vol.2, issue.7, pp.847-56, 2004.
DOI : 10.1038/ni1058

O. Boyman and J. Sprent, The role of interleukin-2 during homeostasis and activation of the immune system, Nature Reviews Immunology, vol.108, pp.180-90, 2012.
DOI : 10.1038/nri3156

T. Malek, The Biology of Interleukin-2, Annual Review of Immunology, vol.26, issue.1, pp.453-79, 2008.
DOI : 10.1146/annurev.immunol.26.021607.090357

B. Rocha and C. Tanchot, Towards a cellular definition of CD8+ T-cell memory: the role of CD4+ T-cell help in CD8+ T-cell responses, Current Opinion in Immunology, vol.16, issue.3, pp.259-63, 2004.
DOI : 10.1016/j.coi.2004.03.004

J. Cho, H. Kim, C. Surh, and J. Sprent, T Cell Receptor-Dependent Regulation of Lipid Rafts Controls Naive CD8+ T Cell Homeostasis, Immunity, vol.32, issue.2, pp.214-240, 2010.
DOI : 10.1016/j.immuni.2009.11.014

S. Stoll, J. Delon, T. Brotz, and R. Germain, Dynamic Imaging of T Cell-Dendritic Cell Interactions in Lymph Nodes, Science, vol.296, issue.5574, pp.1873-1879, 2002.
DOI : 10.1126/science.1071065

Q. Tang, J. Adams, A. Tooley, M. Bi, B. Fife et al., Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice, Nature Immunology, vol.360, issue.1, pp.83-92, 1289.
DOI : 10.1038/ni1289

A. Scholer, S. Hugues, A. Boissonnas, L. Fetler, and S. Amigorena, Intercellular Adhesion Molecule-1-Dependent Stable Interactions between T Cells and Dendritic Cells Determine CD8+ T Cell Memory, Immunity, vol.28, issue.2, pp.258-70, 2008.
DOI : 10.1016/j.immuni.2007.12.016

F. Benvenuti, C. Lagaudrière-gesbert, I. Grandjean, C. Jancic, C. Hivroz et al., Dendritic Cell Maturation Controls Adhesion, Synapse Formation, and the Duration of the Interactions with Naive T Lymphocytes, The Journal of Immunology, vol.172, issue.1, pp.292-301, 2004.
DOI : 10.4049/jimmunol.172.1.292

B. Molon, G. Gri, M. Bettella, C. Gómez-moutón, A. Lanzavecchia et al., T cell costimulation by chemokine receptors, Nature Immunology, vol.173, issue.5, pp.465-71, 1191.
DOI : 10.1084/jem.182.2.389

S. Prokopiou, L. Barbarroux, S. Bernard, J. Mafille, Y. Leverrier et al., Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study, Computation, vol.2, issue.4, pp.159-81, 2014.
DOI : 10.3390/computation2040159

URL : https://hal.archives-ouvertes.fr/hal-01074736

M. Swat, S. Hester, A. Balter, R. Heiland, B. Zaitlen et al., Multicell Simulations of Development and Disease Using the CompuCell3D Simulation Environment, Methods Mol Biol, vol.500, pp.361-428, 2009.
DOI : 10.1007/978-1-59745-525-1_13

J. Donohue and S. Rosenberg, The fate of interleukin-2 after in vivo administration, J Immunol, vol.130, pp.2203-2211, 1983.

A. Filby, B. Seddon, J. Kleczkowska, R. Salmond, P. Tomlinson et al., Fyn Regulates the Duration of TCR Engagement Needed for Commitment to Effector Function, The Journal of Immunology, vol.179, issue.7, pp.4635-4679, 2007.
DOI : 10.4049/jimmunol.179.7.4635

M. Gunzer, A. Schäfer, S. Borgmann, S. Grabbe, K. Zänker et al., Antigen Presentation in Extracellular Matrix, Immunity, vol.13, issue.3, pp.323-355, 2000.
DOI : 10.1016/S1074-7613(00)00032-7

T. Mempel, S. Henrickson, and U. Von-andrian, T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases, Nat Cell Biol, vol.427, pp.154-163, 2004.

P. Bousso, T-cell activation by dendritic cells in the lymph node: lessons from the movies, Nature Reviews Immunology, vol.203, issue.9, pp.675-84, 2008.
DOI : 10.1038/nri2379

F. Lemaître, H. Moreau, L. Vedele, and P. Bousso, Phenotypic CD8+ T Cell Diversification Occurs before, during, and after the First T Cell Division, The Journal of Immunology, vol.191, issue.4, pp.1578-85, 2013.
DOI : 10.4049/jimmunol.1300424

L. Mclane, P. Banerjee, G. Cosma, G. Makedonas, E. Wherry et al., Differential Localization of T-bet and Eomes in CD8 T Cell Memory Populations, The Journal of Immunology, vol.190, issue.7, pp.3207-3222, 2013.
DOI : 10.4049/jimmunol.1201556

D. Sojka, D. Bruniquel, R. Schwartz, and N. Singh, IL-2 Secretion by CD4+ T Cells In Vivo Is Rapid, Transient, and Influenced by TCR-Specific Competition, The Journal of Immunology, vol.172, issue.10, pp.6136-6179, 2004.
DOI : 10.4049/jimmunol.172.10.6136

J. Arsenio, B. Kakaradov, P. Metz, S. Kim, G. Yeo et al., Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses, Nature Immunology, vol.9, issue.4, pp.365-72, 2014.
DOI : 10.1038/nprot.2009.9

J. Cho, O. Boyman, H. Kim, B. Hahm, M. Rubinstein et al., cells driven by IL-2, The Journal of Experimental Medicine, vol.87, issue.8
DOI : 10.1016/j.immuni.2005.01.005

N. Joshi, W. Cui, A. Chandele, H. Lee, D. Urso et al., Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor, Immunity, vol.27, issue.2, pp.281-95, 2007.
DOI : 10.1016/j.immuni.2007.07.010

D. Mcilwain, T. Berger, and T. Mak, Caspase Functions in Cell Death and Disease, Cold Spring Harbor Perspectives in Biology, vol.5, issue.4, 2013.
DOI : 10.1101/cshperspect.a008656

S. Ju, D. Panka, H. Cui, R. Ettinger, M. Khatib et al., Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation, Nature, vol.373, issue.6513, pp.444-452, 1995.
DOI : 10.1038/373444a0

S. Nagata, Apoptosis by Death Factor, Cell, vol.88, issue.3, pp.355-65, 1997.
DOI : 10.1016/S0092-8674(00)81874-7

P. Bouillet, O. Reilly, and L. Cd95, CD95, BIM and T cell homeostasis, Nature Reviews Immunology, vol.37, issue.7, pp.514-523, 2009.
DOI : 10.1038/nri2570

K. Hoyer, H. Dooms, L. Barron, and A. Abbas, Interleukin-2 in the development and control of inflammatory disease, Immunological Reviews, vol.226, issue.1, pp.19-28, 2008.
DOI : 10.1111/j.1600-065X.2008.00697.x

C. Yeo and D. Fearon, T-bet-mediated differentiation of the activated CD8+ T cell, European Journal of Immunology, vol.194, issue.1, pp.60-66, 2011.
DOI : 10.1002/eji.201040873

G. Martins and K. Calame, Regulation and Functions of Blimp-1 in T and B Lymphocytes, Annual Review of Immunology, vol.26, issue.1, pp.133-69, 2008.
DOI : 10.1146/annurev.immunol.26.021607.090241

E. Hwang, J. Hong, and L. Glimcher, IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508, The Journal of Experimental Medicine, vol.77, issue.9, pp.1289-300, 2005.
DOI : 10.1126/science.275.5308.1930

J. Kelly, R. Spolski, K. Imada, J. Bollenbacher, S. Lee et al., A Role for Stat5 in CD8+ T Cell Homeostasis, The Journal of Immunology, vol.170, issue.1, pp.210-217, 2003.
DOI : 10.4049/jimmunol.170.1.210

K. Ewings, C. Wiggins, and S. Cook, Bim and the Pro-Survival Bcl-2 Proteins: Opposites Attract, ERK Repels, Cell Cycle, vol.6, issue.18, pp.2236-2276, 2007.
DOI : 10.4161/cc.6.18.4728

B. Sullivan, A. Juedes, S. Szabo, M. Von-herrath, and L. Glimcher, Antigen-driven effector CD8 T cell function regulated by T-bet, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15818-15841, 2003.
DOI : 10.1073/pnas.2636938100

A. Lighvani, D. Frucht, D. Jankovic, H. Yamane, J. Aliberti et al., T-bet is rapidly induced by interferon-?? in lymphoid and myeloid cells, Proceedings of the National Academy of Sciences, vol.98, issue.26, pp.15137-15179, 2001.
DOI : 10.1073/pnas.261570598

A. Kanhere, A. Hertweck, U. Bhatia, M. Gökmen, E. Perucha et al., T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements, Nature Communications, vol.129, pp.1268-1278, 2012.
DOI : 10.1038/ncomms2260