L. Chen, D. Magliano, and P. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus???present and future perspectives, Nature Reviews Endocrinology, vol.14, issue.4, pp.228-264, 2012.
DOI : 10.1038/nrendo.2011.183

F. Rubino, P. Schauer, and L. Kaplan, Metabolic Surgery to Treat Type 2 Diabetes: Clinical Outcomes and Mechanisms of Action, Annual Review of Medicine, vol.61, issue.1, pp.393-411, 2010.
DOI : 10.1146/annurev.med.051308.105148

J. Thaler and D. Cummings, Hormonal and Metabolic Mechanisms of Diabetes Remission after Gastrointestinal Surgery, Endocrinology, vol.150, issue.6, pp.2518-2543, 2009.
DOI : 10.1210/en.2009-0367

B. Schultes, B. Ernst, and B. Wilms, Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery, American Journal of Clinical Nutrition, vol.92, issue.2, pp.277-83, 2010.
DOI : 10.3945/ajcn.2009.29007

C. Mathes and A. Spector, Food selection and taste changes in humans after Roux-en-Y gastric bypass surgery: A direct-measures approach, Physiology & Behavior, vol.107, issue.4, pp.476-83, 2012.
DOI : 10.1016/j.physbeh.2012.02.013

M. Stefater, H. Wilson-pérez, and A. Chambers, All Bariatric Surgeries Are Not Created Equal: Insights from Mechanistic Comparisons, Endocrine Reviews, vol.33, issue.4, pp.595-622, 2012.
DOI : 10.1210/er.2011-1044

K. Trinh, O. Doherty, R. Anderson, and P. , Perturbation of Fuel Homeostasis Caused by Overexpression of the Glucose-6-phosphatase Catalytic Subunit in Liver of Normal Rats, Journal of Biological Chemistry, vol.273, issue.47, pp.31615-31635, 1998.
DOI : 10.1074/jbc.273.47.31615

J. Clore, J. Stillman, and H. Sugerman, Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes, Diabetes, vol.49, issue.6, pp.969-74, 2000.
DOI : 10.2337/diabetes.49.6.969

F. Delaere, A. Duchampt, and L. Mounien, The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing, Molecular Metabolism, vol.2, issue.1, pp.47-53, 2012.
DOI : 10.1016/j.molmet.2012.11.003

C. Duraffourd, D. Vadder, F. Goncalves, and D. , Mu-Opioid Receptors and Dietary Protein Stimulate a Gut-Brain Neural Circuitry Limiting Food Intake, Cell, vol.150, issue.2, pp.377-88, 2012.
DOI : 10.1016/j.cell.2012.05.039

URL : https://hal.archives-ouvertes.fr/inserm-00737417

G. Mithieux, P. Misery, and C. Magnan, Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein, Cell Metabolism, vol.2, issue.5, pp.321-330, 2005.
DOI : 10.1016/j.cmet.2005.09.010

B. Pillot, M. Soty, and A. Gautier-stein, Protein Feeding Promotes Redistribution of Endogenous Glucose Production to the Kidney and Potentiates Its Suppression by Insulin, Endocrinology, vol.150, issue.2, pp.616-640, 2009.
DOI : 10.1210/en.2008-0601

S. Troy, M. Soty, and L. Ribeiro, Intestinal Gluconeogenesis Is a Key Factor for Early Metabolic Changes after Gastric Bypass but Not after Gastric Lap-Band in Mice, Cell Metabolism, vol.8, issue.3, pp.201-212, 2008.
DOI : 10.1016/j.cmet.2008.08.008

D. Sun, K. Wang, and Z. Yan, Duodenal???Jejunal Bypass Surgery Up-Regulates the Expression of the Hepatic Insulin Signaling Proteins and the Key Regulatory Enzymes of Intestinal Gluconeogenesis in Diabetic Goto???Kakizaki Rats, Obesity Surgery, vol.255, issue.2, pp.1734-1776, 2013.
DOI : 10.1007/s11695-013-0985-0

S. Paranjape, O. Chan, and W. Zhu, Improvement in hepatic insulin sensitivity after Roux-en-Y gastric bypass in a rat model of obesity is partially mediated via hypothalamic insulin action, Diabetologia, vol.22, issue.Suppl 3, pp.2055-2063, 2013.
DOI : 10.1007/s00125-013-2952-7

M. Hayes, J. Foo, and V. Besic, Is Intestinal Gluconeogenesis a Key Factor in the Early Changes in Glucose Homeostasis Following Gastric Bypass?, Obesity Surgery, vol.285, issue.2, pp.759-62, 2011.
DOI : 10.1007/s11695-011-0380-7

G. Mithieux, Comment about intestinal gluconeogenesis after gastric bypass in human in relation with the paper by, Obes. Surg. Obes Surg, vol.22, pp.1923-1927, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00736540

H. Immonen, J. Hannukainen, and P. Iozzo, Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients, Journal of Hepatology, vol.60, issue.2, pp.377-83, 2014.
DOI : 10.1016/j.jhep.2013.09.012

P. Seyer, D. Vallois, and C. Poitry-yamate, Hepatic glucose sensing is required to preserve ?? cell glucose competence, Journal of Clinical Investigation, vol.123, issue.4, pp.1662-76, 2013.
DOI : 10.1172/JCI65538

M. Düfer, K. Hörth, and R. Wagner, Bile Acids Acutely Stimulate Insulin Secretion of Mouse ??-Cells via Farnesoid X Receptor Activation and KATP Channel Inhibition, Diabetes, vol.61, issue.6, pp.1479-89, 2012.
DOI : 10.2337/db11-0815

B. Renga, A. Mencarelli, and P. Vavassori, The bile acid sensor FXR regulates insulin transcription and secretion, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1802, issue.3, pp.363-72, 2010.
DOI : 10.1016/j.bbadis.2010.01.002

M. Watanabe, S. Houten, and C. Mataki, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation, Nature, vol.621, issue.7075, pp.484-493, 2006.
DOI : 10.1038/nature04330

URL : https://hal.archives-ouvertes.fr/hal-00188183

D. Fabiani, E. Mitro, N. Gilardi, and F. , Coordinated Control of Cholesterol Catabolism to Bile Acids and of Gluconeogenesis via a Novel Mechanism of Transcription Regulation Linked to the Fasted-to-fed Cycle, Journal of Biological Chemistry, vol.278, issue.40, pp.39124-39156, 2003.
DOI : 10.1074/jbc.M305079200

K. Yamagata, H. Daitoku, and Y. Shimamoto, Bile Acids Regulate Gluconeogenic Gene Expression via Small Heterodimer Partner-mediated Repression of Hepatocyte Nuclear Factor 4 and Foxo1, Journal of Biological Chemistry, vol.279, issue.22, pp.23158-65, 2004.
DOI : 10.1074/jbc.M314322200

K. Ma, P. Saha, and L. Chan, Farnesoid X receptor is essential for normal glucose homeostasis, Journal of Clinical Investigation, vol.116, issue.4, pp.1102-1111, 2006.
DOI : 10.1172/JCI25604

M. Patti, S. Houten, and A. Bianco, Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism, Obesity, vol.260, issue.9, pp.1671-1678, 2009.
DOI : 10.1038/oby.2009.102

URL : https://hal.archives-ouvertes.fr/inserm-00420817

D. Pournaras, C. Glicksman, and R. Vincent, The Role of Bile After Roux-en-Y Gastric Bypass in Promoting Weight Loss and Improving Glycaemic Control, Endocrinology, vol.153, issue.8, pp.3613-3622, 2012.
DOI : 10.1210/en.2011-2145

M. Simonen, N. Dali-youcef, and D. Kaminska, Conjugated Bile Acids Associate with Altered Rates of Glucose and Lipid Oxidation after Roux-en-Y Gastric Bypass, Obesity Surgery, vol.70, issue.9, pp.1473-80, 2012.
DOI : 10.1007/s11695-012-0673-5

R. Kohli, D. Bradley, and K. Setchell, Weight Loss Induced by Roux-en-Y Gastric Bypass But Not Laparoscopic Adjustable Gastric Banding Increases Circulating Bile Acids, The Journal of Clinical Endocrinology & Metabolism, vol.98, issue.4, pp.708-720, 2013.
DOI : 10.1210/jc.2012-3736

M. Rudnicki, D. Patel, and D. Mcfadden, Proximal jejunal and biliary effects on the enteroinsular axis, Surgery, vol.107, pp.455-60, 1990.

G. Mithieux, I. Bady, and A. Gautier, Induction of control genes in intestinal gluconeogenesis is sequential during fasting and maximal in diabetes, AJP: Endocrinology and Metabolism, vol.286, issue.3, pp.370-375, 2004.
DOI : 10.1152/ajpendo.00299.2003

F. Rajas, N. Bruni, and S. Montano, The glucose-6 phosphatase gene is expressed in human and rat small intestine: Regulation of expression in fasted and diabetic rats, Gastroenterology, vol.117, issue.1, pp.132-141, 1999.
DOI : 10.1016/S0016-5085(99)70559-7

P. Jansen, J. Van-werven, and E. Aarts, Alterations of Hormonally Active Fibroblast Growth Factors after Roux-en-Y Gastric Bypass Surgery, Digestive Diseases, vol.29, issue.1, pp.48-51, 2011.
DOI : 10.1159/000324128

P. Lefebvre, B. Cariou, L. F. Kuipers, F. Staels, and B. , Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation, Physiological Reviews, vol.89, issue.1, pp.147-91, 2009.
DOI : 10.1152/physrev.00010.2008

A. Mencarelli, B. Renga, D. Amore, and C. , Dissociation of Intestinal and Hepatic Activities of FXR and LXR?? Supports Metabolic Effects of Terminal Ileum Interposition in Rodents, Diabetes, vol.62, issue.10, pp.3384-93, 2013.
DOI : 10.2337/db13-0299

K. Sloop, A. Showalter, and A. Cox, Specific Reduction of Hepatic Glucose 6-Phosphate Transporter-1 Ameliorates Diabetes while Avoiding Complications of Glycogen Storage Disease, Journal of Biological Chemistry, vol.282, issue.26, pp.19113-19134, 2007.
DOI : 10.1074/jbc.M610759200

A. Gómez-valadés, A. Méndez-lucas, and A. Vidal-alabró, Pck1 Gene Silencing in the Liver Improves Glycemia Control, Insulin Sensitivity, and Dyslipidemia in db/db Mice, Diabetes, vol.57, issue.8, pp.2199-210, 2008.
DOI : 10.2337/db07-1087

R. Kohli, K. Setchell, and M. Kirby, A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery, Endocrinology, vol.154, issue.7, pp.2341-51, 2013.
DOI : 10.1210/en.2012-2069

D. Vadder, F. Kovatcheva-datchary, P. Goncalves, and D. , Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits, Cell, vol.156, issue.1-2, pp.84-96, 2014.
DOI : 10.1016/j.cell.2013.12.016

A. Myronovych, M. Kirby, and K. Ryan, Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner, Obesity, vol.38, issue.Suppl 3, pp.390-400, 2014.
DOI : 10.1002/oby.20548

K. Ryan, V. Tremaroli, and C. Clemmensen, FXR is a molecular target for the effects of vertical sleeve gastrectomy, Nature, vol.26, issue.7499, p.10, 1038.
DOI : 10.1038/nature13135

H. Kenler, R. Brolin, and R. Cody, Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass, Am J Clin Nutr, vol.52, pp.87-92, 1990.

T. Olbers, S. Björkman, and A. Lindroos, Body Composition, Dietary Intake, and Energy Expenditure After Laparoscopic Roux-en-Y Gastric Bypass and Laparoscopic Vertical Banded Gastroplasty, Annals of Surgery, vol.244, issue.5, pp.715-737, 2006.
DOI : 10.1097/01.sla.0000218085.25902.f8

B. Ernst, M. Thurnheer, and B. Wilms, Differential Changes in Dietary Habits after Gastric Bypass Versus Gastric Banding Operations, Obesity Surgery, vol.17, issue.3, pp.274-80, 2009.
DOI : 10.1007/s11695-008-9769-3

A. Miras and C. Le-roux, Bariatric surgery and taste: novel mechanisms of weight loss, Current Opinion in Gastroenterology, vol.26, issue.2, pp.140-145, 2010.
DOI : 10.1097/MOG.0b013e328333e94a

M. Bueter, A. Miras, and H. Chichger, Alterations of sucrose preference after Roux-en-Y gastric bypass, Physiology & Behavior, vol.104, issue.5, pp.709-730, 2011.
DOI : 10.1016/j.physbeh.2011.07.025

L. Roux, C. Bueter, M. Theis, and N. , Gastric bypass reduces fat intake and preference, AJP: Regulatory, Integrative and Comparative Physiology, vol.301, issue.4, pp.1057-66, 2011.
DOI : 10.1152/ajpregu.00139.2011