L. Chen, D. J. Magliano, and P. Z. Zimmet, The worldwide epidemiology of type 2 diabetes mellitus???present and future perspectives, Nature Reviews Endocrinology, vol.14, issue.4, pp.228-236, 2012.
DOI : 10.1038/nrendo.2011.183

R. A. Defronzo, Pathogenesis of type 2 diabetes mellitus, Medical Clinics of North America, vol.88, issue.4, pp.787-835, 2004.
DOI : 10.1016/j.mcna.2004.04.013

D. K. Granner and R. M. O-'brien, Molecular Physiology and Genetics of NIDDM: Importance of Metabolic Staging, Diabetes Care, vol.15, issue.3, pp.369-395, 1992.
DOI : 10.2337/diacare.15.3.369

C. Weyer, C. Bogardus, D. M. Mott, and R. E. Pratley, The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus, Journal of Clinical Investigation, vol.104, issue.6, pp.787-794, 1999.
DOI : 10.1172/JCI7231

D. Lauro, Y. Kido, A. L. Castle, M. J. Zarnowski, H. Hayashi et al., Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue, Nature Genetics, vol.20, pp.294-298, 1998.

J. N. Clore, J. Stillman, and H. Sugerman, Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes, Diabetes, vol.49, issue.6, pp.969-974, 2000.
DOI : 10.2337/diabetes.49.6.969

A. Consoli, N. Nurjhan, F. Capani, and J. Gerich, Predominant Role of Gluconeogenesis in Increased Hepatic Glucose Production in NIDDM, Diabetes, vol.38, issue.5, pp.550-557, 1989.
DOI : 10.2337/diab.38.5.550

P. D. Home and G. Pacini, Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: a critical target for insulin-sensitizing agents, Diabetes, Obesity and Metabolism, vol.544, issue.(12), pp.699-718, 2008.
DOI : 10.1111/j.1463-1326.2007.00761.x

I. Magnusson, D. L. Rothman, L. D. Katz, R. G. Shulman, and G. I. Shulman, Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study., Journal of Clinical Investigation, vol.90, issue.4, pp.1323-1327, 1992.
DOI : 10.1172/JCI115997

R. A. Rizza, Pathogenesis of Fasting and Postprandial Hyperglycemia in Type 2 Diabetes: Implications for Therapy, Diabetes, vol.59, issue.11, pp.2697-2707, 2010.
DOI : 10.2337/db10-1032

M. Roden, K. F. Petersen, and G. I. Shulman, Nuclear Magnetic Resonance Studies of Hepatic Glucose Metabolism in Humans, Recent Progress in Hormone Research, vol.56, issue.1, pp.219-237, 2001.
DOI : 10.1210/rp.56.1.219

J. Y. Altarejos and M. Montminy, CREB and the CRTC co-activators: sensors for hormonal and metabolic signals, Nature Reviews Molecular Cell Biology, vol.307, issue.3, pp.141-151, 2011.
DOI : 10.1038/nrm3072

D. Prato, S. Marchetti, and P. , Beta- and Alpha-Cell Dysfunction in Type 2 Diabetes, Hormone and Metabolic Research, vol.36, issue.11/12, pp.775-781, 2004.
DOI : 10.1055/s-2004-826163

G. Mithieux, F. Rajas, and A. Gautier-stein, A Novel Role for Glucose 6-Phosphatase in the Small Intestine in the Control of Glucose Homeostasis, Journal of Biological Chemistry, vol.279, issue.43, pp.44231-44234, 2004.
DOI : 10.1074/jbc.R400011200

F. Delaere, C. Magnan, and G. Mithieux, Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity, Diabetes & Metabolism, vol.36, issue.4, pp.257-262, 2010.
DOI : 10.1016/j.diabet.2010.05.001

G. Mithieux, Nutrient control of hunger by extrinsic gastrointestinal neurons, Trends in Endocrinology & Metabolism, vol.24, issue.8, pp.378-384, 2013.
DOI : 10.1016/j.tem.2013.04.005

URL : https://hal.archives-ouvertes.fr/inserm-00835940

C. Duraffourd, F. De-vadder, D. Goncalves, F. Delaere, A. Penhoat et al., Mu-Opioid Receptors and Dietary Protein Stimulate a Gut-Brain Neural Circuitry Limiting Food Intake, Cell, vol.150, issue.2, pp.377-388
DOI : 10.1016/j.cell.2012.05.039

URL : https://hal.archives-ouvertes.fr/inserm-00737417

B. Pillot, M. Soty, A. Gautier-stein, C. Zitoun, and G. Mithieux, Protein Feeding Promotes Redistribution of Endogenous Glucose Production to the Kidney and Potentiates Its Suppression by Insulin, Endocrinology, vol.150, issue.2, pp.616-624, 2009.
DOI : 10.1210/en.2008-0601

D. Vadder, F. Kovatcheva-datchary, P. Goncalves, D. Vinera, J. Zitoun et al., Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits, Cell, vol.2014, issue.156, pp.84-96

E. Mutel, A. Gautier-stein, A. Abdul-wahed, M. Amigó-correig, C. Zitoun et al., Control of Blood Glucose in the Absence of Hepatic Glucose Production During Prolonged Fasting in Mice: Induction of Renal and Intestinal Gluconeogenesis by Glucagon, Diabetes, vol.60, issue.12, pp.3121-3131, 2011.
DOI : 10.2337/db11-0571

E. Mutel, A. Abdul-wahed, N. Ramamonjisoa, A. Stefanutti, I. Houberdon et al., Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas, Journal of Hepatology, vol.54, issue.3, pp.529-537, 2011.
DOI : 10.1016/j.jhep.2010.08.014

URL : https://hal.archives-ouvertes.fr/hal-00575314

M. J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He et al., FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response, Proceedings of the National Academy of Sciences of the United States of America, pp.10853-10858, 2009.

T. J. Wetter, A. C. Gazdag, D. J. Dean, and G. D. Cartee, Effect of calorie restriction on in vivo glucose metabolism by individual tissues in rats, American Journal of Physiology, vol.276, pp.728-738, 1999.

G. Pfleiderer, Glycogen, pp.59-62, 1974.
DOI : 10.1016/B978-0-12-395630-9.50012-8

F. Rajas, H. Jourdan-pineau, A. Stefanutti, E. A. Mrad, P. B. Iynedjian et al., Immunocytochemical localization of glucose 6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase in gluconeogenic tissues reveals unsuspected metabolic zonation, Histochemistry and Cell Biology, vol.38, issue.5, pp.555-565, 2007.
DOI : 10.1007/s00418-006-0263-5

S. Luquet, J. Lopez-soriano, D. Holst, A. Fredenrich, J. Melki et al., Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability, FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, vol.17, pp.2299-2301, 2003.

G. Mithieux, A. Gautier-stein, F. Rajas, and C. Zitoun, Contribution of intestine and kidney to glucose fluxes in different nutritional states in rat, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.143, issue.2, pp.195-200, 2006.
DOI : 10.1016/j.cbpb.2005.11.007

C. Postic and J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice, Journal of Clinical Investigation, vol.118, issue.3, pp.829-838, 2008.
DOI : 10.1172/JCI34275

N. Ramamonjisoa, H. Ratiney, E. Mutel, H. Guillou, G. Mithieux et al., In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a, The Journal of Lipid Research, vol.54, issue.7, pp.2010-2022, 2013.
DOI : 10.1194/jlr.D033399

URL : https://hal.archives-ouvertes.fr/hal-00847703

B. B. Lowell and B. M. Spiegelman, Towards a molecular understanding of adaptive thermogenesis, Nature, vol.404, pp.652-660, 2000.

R. M. Evans, G. D. Barish, and Y. Wang, PPARs and the complex journey to obesity, Nature Medicine, vol.17, issue.4, pp.355-361, 2004.
DOI : 10.1161/01.ATV.0000103951.67680.B1

A. R. Pogozelski, T. Geng, P. Li, X. Yin, V. A. Lira et al., p38?? Mitogen-Activated Protein Kinase Is a Key Regulator in Skeletal Muscle Metabolic Adaptation in Mice, PLoS ONE, vol.4, issue.11, pp.38-7934, 2009.
DOI : 10.1371/journal.pone.0007934.s009

B. Viollet, L. Lantier, J. Devin-leclerc, S. Hebrard, C. Amouyal et al., Targeting the AMPK pathway for the treatment of Type 2 diabetes, Frontiers in Bioscience, vol.Volume, issue.14, pp.3380-3400, 2009.
DOI : 10.2741/3460

URL : https://hal.archives-ouvertes.fr/inserm-00367501

E. Ehrenborg and A. Krook, Regulation of Skeletal Muscle Physiology and Metabolism by Peroxisome Proliferator-Activated Receptor ??, Pharmacological Reviews, vol.61, issue.3, pp.373-393, 2009.
DOI : 10.1124/pr.109.001560

J. Olesen, K. Kiilerich, and H. Pilegaard, PGC-1??-mediated adaptations in skeletal muscle, Pfl??gers Archiv - European Journal of Physiology, vol.98, issue.6, pp.153-162, 2010.
DOI : 10.1007/s00424-010-0834-0

J. Imai, H. Katagiri, T. Yamada, Y. Ishigaki, T. Suzuki et al., Regulation of Pancreatic ?? Cell Mass by Neuronal Signals from the Liver, Science, vol.322, issue.5905, pp.1250-1254, 2008.
DOI : 10.1126/science.1163971

K. Uno, H. Katagiri, T. Yamada, Y. Ishigaki, T. Ogihara et al., Neuronal Pathway from the Liver Modulates Energy Expenditure and Systemic Insulin Sensitivity, Science, vol.312, issue.5780, pp.1656-1659, 2006.
DOI : 10.1126/science.1126010

S. Troy, M. Soty, L. Ribeiro, L. Laval, S. Migrenne et al., Intestinal Gluconeogenesis Is a Key Factor for Early Metabolic Changes after Gastric Bypass but Not after Gastric Lap-Band in Mice, Cell Metabolism, vol.8, issue.3, pp.201-211, 2008.
DOI : 10.1016/j.cmet.2008.08.008

Y. Oike, M. Akao, Y. Kubota, and T. Suda, Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy, Trends in Molecular Medicine, vol.11, issue.10, pp.473-479, 2005.
DOI : 10.1016/j.molmed.2005.08.002

K. G. Kumar, J. L. Trevaskis, D. D. Lam, G. M. Sutton, R. A. Koza et al., Identification of Adropin as a Secreted Factor Linking Dietary Macronutrient Intake with Energy Homeostasis and Lipid Metabolism, Cell Metabolism, vol.8, issue.6, pp.468-481, 2008.
DOI : 10.1016/j.cmet.2008.10.011

G. Perdomo, M. A. Martinez-brocca, B. A. Bhatt, N. F. Brown, R. M. O-'doherty et al., Hepatocyte Growth Factor Is a Novel Stimulator of Glucose Uptake and Metabolism in Skeletal Muscle Cells, Journal of Biological Chemistry, vol.283, issue.20, pp.13700-13706, 2008.
DOI : 10.1074/jbc.M707551200

N. Stefan, H. Häring, K. M. Habegger, K. Stemmer, C. Cheng et al., Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans Fibroblast growth factor 21 mediates specific glucagon actions, Nature Medicine Diabetes, vol.19, issue.62, pp.1453-1463, 2013.

M. K. Badman, P. Pissios, A. R. Kennedy, G. Koukos, J. S. Flier et al., Hepatic Fibroblast Growth Factor 21 Is Regulated by PPAR?? and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States, Cell Metabolism, vol.5, issue.6, pp.426-437, 2007.
DOI : 10.1016/j.cmet.2007.05.002

A. Kharitonenkov and P. Larsen, FGF21 reloaded: challenges of a rapidly growing field, Trends in Endocrinology & Metabolism, vol.22, issue.3, pp.81-86, 2011.
DOI : 10.1016/j.tem.2010.11.003

A. Kharitonenkov, T. L. Shiyanova, A. Koester, A. M. Ford, R. Micanovic et al., FGF-21 as a novel metabolic regulator, Journal of Clinical Investigation, vol.115, issue.6, pp.1627-1635, 2005.
DOI : 10.1172/JCI23606

E. D. Berglund, C. Y. Li, H. A. Bina, S. E. Lynes, M. D. Michael et al., Fibroblast Growth Factor 21 Controls Glycemia via Regulation of Hepatic Glucose Flux and Insulin Sensitivity, Endocrinology, vol.150, issue.9, pp.4084-4093, 2009.
DOI : 10.1210/en.2009-0221

T. Coskun, H. A. Bina, M. A. Schneider, J. D. Dunbar, C. C. Hu et al., Fibroblast Growth Factor 21 Corrects Obesity in Mice, Endocrinology, vol.149, issue.12, pp.6018-6027, 2008.
DOI : 10.1210/en.2008-0816

Y. Li, K. Wong, A. Giles, J. Jiang, J. W. Lee et al., Hepatic SIRT1 Attenuates Hepatic Steatosis and Controls Energy Balance in Mice by Inducing Fibroblast Growth Factor 21, Gastroenterology, vol.146, issue.2, pp.539-549, 2014.
DOI : 10.1053/j.gastro.2013.10.059

J. Xu, D. J. Lloyd, C. Hale, S. Stanislaus, M. Chen et al., Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice, Diabetes, vol.58, issue.1, pp.250-259, 2009.
DOI : 10.2337/db08-0392

Y. Oike, M. Akao, K. Yasunaga, T. Yamauchi, T. Morisada et al., Angiopoietin-related growth factor antagonizes obesity and insulin resistance, Nature Medicine, vol.106, issue.43, pp.400-408, 2005.
DOI : 10.1074/jbc.M105945200

T. Uebanso, Y. Taketani, H. Yamamoto, K. Amo, H. Ominami et al., Paradoxical Regulation of Human FGF21 by Both Fasting and Feeding Signals: Is FGF21 a Nutritional Adaptation Factor?, PLoS ONE, vol.287, issue.1, p.22976, 2011.
DOI : 10.1371/journal.pone.0022976.g006

G. Filhoulaud, S. Guilmeau, R. Dentin, J. Girard, and C. Postic, Novel insights into ChREBP regulation and function, Trends in Endocrinology & Metabolism, vol.24, issue.5, pp.257-268, 2013.
DOI : 10.1016/j.tem.2013.01.003

R. Dentin, L. Tomas-cobos, F. Foufelle, J. Leopold, J. Girard et al., Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver, Journal of Hepatology, vol.56, issue.1, 2012.
DOI : 10.1016/j.jhep.2011.07.019

M. A. Herman, O. D. Peroni, J. Villoria, M. R. Schön, N. A. Abumrad et al., A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism, Nature, vol.4, issue.7394, pp.333-338, 2012.
DOI : 10.1038/nature10986

U. Dressel, T. L. Allen, J. B. Pippal, P. R. Rohde, P. Lau et al., The Peroxisome Proliferator-Activated Receptor ??/?? Agonist, GW501516, Regulates the Expression of Genes Involved in Lipid Catabolism and Energy Uncoupling in Skeletal Muscle Cells, Molecular Endocrinology, vol.17, issue.12, pp.2477-2493, 2003.
DOI : 10.1210/me.2003-0151

T. Tanaka, J. Yamamoto, S. Iwasaki, H. Asaba, H. Hamura et al., Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome, Proceedings of the National Academy of Sciences of the United States of America, pp.15924-15929, 2003.

Y. Wang, C. Lee, S. Tiep, R. T. Yu, J. Ham et al., Peroxisome-Proliferator-Activated Receptor ?? Activates Fat Metabolism to Prevent Obesity, Cell, vol.113, issue.2, pp.159-170, 2003.
DOI : 10.1016/S0092-8674(03)00269-1

G. I. Shulman, Cellular mechanisms of insulin resistance, Journal of Clinical Investigation, vol.106, issue.2, pp.171-176, 2000.
DOI : 10.1172/JCI10583

E. B. Taylor, D. An, H. F. Kramer, H. Yu, N. L. Fujii et al., Discovery of TBC1D1 as an Insulin-, AICAR-, and Contraction-stimulated Signaling Nexus in Mouse Skeletal Muscle, Journal of Biological Chemistry, vol.283, issue.15, pp.9787-9796, 2008.
DOI : 10.1074/jbc.M708839200

X. Xi, J. Han, and J. Z. Zhang, Stimulation of Glucose Transport by AMP-activated Protein Kinase via Activation of p38 Mitogen-activated Protein Kinase, Journal of Biological Chemistry, vol.276, issue.44, pp.41029-41034, 2001.
DOI : 10.1074/jbc.M102824200

G. Mithieux, L. Guignot, J. Bordet, and N. Wiernsperger, Intrahepatic Mechanisms Underlying the Effect of Metformin in Decreasing Basal Glucose Production in Rats Fed a High-Fat Diet, Diabetes, vol.51, issue.1, pp.139-143, 2002.
DOI : 10.2337/diabetes.51.1.139

N. Musi, M. F. Hirshman, J. Nygren, M. Svanfeldt, P. Bavenholm et al., Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects With Type 2 Diabetes, Diabetes, vol.51, issue.7, pp.2074-2081, 2002.
DOI : 10.2337/diabetes.51.7.2074

G. Mithieux, Metformin and the gut function In: Metformin mech. insights new appl, pp.31-40, 2008.

A. Grefhorst, M. Schreurs, M. H. Oosterveer, V. A. Cortés, R. Havinga et al., Carbohydrate-response-element-binding protein (ChREBP) and not the liver X receptor ?? (LXR??) mediates elevated hepatic lipogenic gene expression in a mouse model of glycogen storage disease type??1, Biochemical Journal, vol.114, issue.2, pp.249-254, 2010.
DOI : 10.1074/jbc.M801922200

Z. Sun and M. A. Lazar, Dissociating fatty liver and diabetes, Trends in Endocrinology & Metabolism, vol.24, issue.1, pp.4-12, 2013.
DOI : 10.1016/j.tem.2012.09.005

Z. Sun, R. A. Miller, R. T. Patel, J. Chen, R. Dhir et al., Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration, Nature Medicine, vol.119, issue.6, pp.271-281, 2012.
DOI : 10.1074/jbc.M602497200

X. Ge, C. Chen, X. Hui, Y. Wang, K. S. Lam et al., Fibroblast Growth Factor 21 Induces Glucose Transporter-1 Expression through Activation of the Serum Response Factor/Ets-Like Protein-1 in Adipocytes, Journal of Biological Chemistry, vol.286, issue.40, pp.34533-34541, 2011.
DOI : 10.1074/jbc.M111.248591

A. Kharitonenkov and A. C. Adams, Inventing new medicines: The FGF21 story, Molecular Metabolism, vol.3, issue.3, pp.221-229, 2014.
DOI : 10.1016/j.molmet.2013.12.003

G. Gaich, J. Y. Chien, H. Fu, L. C. Glass, M. A. Deeg et al., The Effects of LY2405319, an FGF21 Analog, in Obese Human Subjects with Type 2 Diabetes, obese human subjects with type 2 diabetes, pp.333-340, 2013.
DOI : 10.1016/j.cmet.2013.08.005

J. Huang, T. Ishino, G. Chen, P. Rolzin, T. F. Osothprarop et al., Development of a Novel Long-Acting Antidiabetic FGF21 Mimetic by Targeted Conjugation to a Scaffold Antibody, Journal of Pharmacology and Experimental Therapeutics, vol.346, issue.2, pp.270-280, 2013.
DOI : 10.1124/jpet.113.204420

T. D. Müller, L. M. Sullivan, K. Habegger, C. Yi, D. Kabra et al., Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21, Journal of Peptide Science, vol.138, issue.Suppl 3, pp.383-393, 2012.
DOI : 10.1002/psc.2408

M. H. Tschöp and R. D. Dimarchi, Outstanding Scientific Achievement Award Lecture 2011: Defeating Diabesity: The Case for Personalized Combinatorial Therapies, Diabetes, vol.61, issue.6, pp.1309-1314, 2012.
DOI : 10.2337/db12-0272