N. S. Ivey, A. G. Maclean, and A. A. Lackner, Acquired immunodeficiency syndrome and the blood-brain barrier, Journal of Neurovirology, vol.15, issue.2, pp.111-122, 2009.
DOI : 10.1080/13550280902769764

M. Strazza, V. Pirrone, B. Wigdahl, M. R. Nonnemacher, N. J. Abbott et al., Breaking down the barrier: The effects of HIV-1 on the blood???brain barrier, Brain Research, vol.1399, pp.96-115, 2011.
DOI : 10.1016/j.brainres.2011.05.015

I. A. Romero and E. V. Shusta, In vitro models of the blood?brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use, J Cereb Blood Flow Metab, 2016.

M. E. Maubert, V. Pirrone, and N. Rivera, Interaction between tat and drugs of abuse during HIV-1 infection and central nervous system disease. Front. Microbiol. 2015, 6, 1512. [CrossRef] [PubMed] 5. Miner Mechanisms of restriction of viral neuroinvasion at the blood?brain barrier Tumour necrosis factor-alpha affects blood?brain barrier permeability and tight junction-associated occludin in acute liver failure, J.J Curr. Opin. Immunol. Liver Int, vol.38, issue.30, pp.18-23, 2010.

S. M. Stamatovic, R. F. Keep, A. Andjelkovic, A. S. Lossinsky, and R. R. Shivers, Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier, Current Neuropharmacology, vol.6, issue.3, pp.179-192, 2004.
DOI : 10.2174/157015908785777210

C. M. Van-itallie, A. S. Fanning, A. Bridges, and J. M. Anderson, ZO-1 Stabilizes the Tight Junction Solute Barrier through Coupling to the Perijunctional Cytoskeleton, Molecular Biology of the Cell, vol.20, issue.17, pp.3930-3940, 2009.
DOI : 10.1091/mbc.E09-04-0320

R. A. Sobel, M. E. Mitchell, and G. Fondren, Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system, Am. J. Pathol, vol.136, pp.1309-1316, 1990.

B. J. Steffen, E. C. Butcher, and B. Engelhardt, Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse, Am. J. Pathol, vol.145, pp.189-201, 1994.

L. Bo, J. W. Peterson, S. Mork, P. A. Hoffman, W. M. Gallatin et al., Distribution of Immunoglobulin Superfamily Members ICAM-1, -2, -3, and the ??2 Integrin LFA-1 in Multiple Sclerosis Lesions, Journal of Neuropathology and Experimental Neurology, vol.55, issue.10, pp.1060-1072, 1996.
DOI : 10.1097/00005072-199655100-00006

R. Cayrol, K. Wosik, J. L. Berard, A. Dodelet-devillers, I. Ifergan et al., Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system, Nature Immunology, vol.41, issue.2, pp.137-145, 2008.
DOI : 10.1038/ni1551

J. I. Alvarez, R. Cayrol, and A. Prat, Disruption of central nervous system barriers in multiple sclerosis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1812, issue.2, pp.252-264, 2011.
DOI : 10.1016/j.bbadis.2010.06.017

C. S. Raine, B. Cannella, A. M. Duijvestijn, and A. H. Cross, Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination, Lab. Investig, vol.63, pp.476-489, 1990.

M. D. Carrithers, I. Visintin, S. J. Kang, C. A. Janeway, and . Jr, Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment, Brain, vol.123, issue.6, pp.1092-1101, 2000.
DOI : 10.1093/brain/123.6.1092

S. D. Mahajan, R. Aalinkeel, D. E. Sykes, J. L. Reynolds, B. Bindukumar et al., Tight Junction Regulation by Morphine and HIV-1 Tat Modulates Blood???Brain Barrier Permeability, Journal of Clinical Immunology, vol.110, issue.6, pp.528-541, 2008.
DOI : 10.1007/s10875-008-9208-1

H. S. Sharma and S. F. Ali, Alterations in Blood-Brain Barrier Function by Morphine and Methamphetamine, Annals of the New York Academy of Sciences, vol.29, issue.1, pp.198-224, 2006.
DOI : 10.1196/annals.1344.037

S. Yousif, B. Saubamea, S. Cisternino, C. Marie-claire, S. Dauchy et al., Effect of chronic exposure to morphine on the rat blood-brain barrier: focus on the P-glycoprotein, Journal of Neurochemistry, vol.306, issue.3, pp.647-657, 2008.
DOI : 10.1111/j.1471-4159.2008.05647.x

B. B. Weksler, E. A. Subileau, N. Perriere, P. Charneau, K. Holloway et al., Blood-brain barrier-specific properties of a human adult brain endothelial cell line, The FASEB Journal, vol.19, pp.1872-1874, 2005.
DOI : 10.1096/fj.04-3458fje

B. P. Daniels, L. Cruz-orengo, T. J. Pasieka, P. O. Couraud, I. A. Romero et al., Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier, Journal of Neuroscience Methods, vol.212, issue.1, pp.173-179, 2013.
DOI : 10.1016/j.jneumeth.2012.10.001

E. Urich, S. E. Lazic, J. Molnos, I. Wells, and P. Freskgard, Transcriptional Profiling of Human Brain Endothelial Cells Reveals Key Properties Crucial for Predictive In Vitro Blood-Brain Barrier Models, PLoS ONE, vol.26, issue.Pt 14, p.38149, 2012.
DOI : 10.1371/journal.pone.0038149.s011

B. Weksler, I. A. Romero, and P. Couraud, The hcmec/d3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013, p.16
URL : https://hal.archives-ouvertes.fr/inserm-00812147

A. Jacob, S. Potin, H. Chapy, D. Crete, F. Glacial et al., Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure, Brain Research, vol.1613, pp.1613-1640, 2015.
DOI : 10.1016/j.brainres.2015.03.049

L. Chen, W. Liu, P. Wang, Y. Xue, Q. Su et al., Endophilin-1 regulates blood-brain barrier permeability via EGFR-JNK signaling pathway, Brain Research, vol.1606, pp.1606-1650, 2015.
DOI : 10.1016/j.brainres.2015.02.032

F. J. Couper and B. K. Logan, Drugs and Human Performance Fact Sheets Available online: http://www.nhtsa. gov/People, 2015.

E. Y. Zhang, J. Xiong, B. L. Parker, A. Y. Chen, P. E. Fields et al., Depletion and recovery of lymphoid subsets following morphine administration, British Journal of Pharmacology, vol.175, issue.7, pp.1829-1844, 2011.
DOI : 10.1111/j.1476-5381.2011.01475.x

T. Y. Park, E. J. Baik, and S. H. Lee, -induced intercellular adhesion molecule-1 expression is mediated by cAMP/Epac signalling modules in bEnd.3 brain endothelial cells, British Journal of Pharmacology, vol.14, issue.Suppl. 1, pp.604-618, 2013.
DOI : 10.1111/bph.12103

URL : https://hal.archives-ouvertes.fr/hal-00458708

H. F. Langer and T. Chavakis, Leukocyte - endothelial interactions in inflammation, Journal of Cellular and Molecular Medicine, vol.366, issue.7, pp.1211-1220, 2009.
DOI : 10.1111/j.1582-4934.2009.00811.x

D. Bernot, F. Peiretti, M. Canault, I. Juhan-vague, and G. Nalbone, Upregulation of TNF-?-induced ICAM-1 surface expression by adenylate cyclase-dependent pathway in human endothelial cells, Journal of Cellular Physiology, vol.14, issue.2, pp.434-441, 2005.
DOI : 10.1002/jcp.20134

M. Winkler, B. Kemp, S. Hauptmann, and W. Rath, Parturition, Obstetrical & Gynecological Survey, vol.89, issue.3, pp.398-402, 1997.
DOI : 10.1097/00006250-199703000-00016

H. Zhang, J. Chen, X. Liu, L. Awar, A. Mcmickle et al., IL-17 induces expression of vascular cell adhesion molecule through signaling pathway of NF-?b, but not Akt1 and TAK1 in vascular smooth muscle cells, Exp. Immunol, vol.77, pp.230-237, 2012.

J. Jiang, HIV gp120 induces endothelial dysfunction in tumour necrosis factor-??-activated porcine and human endothelial cells, Cardiovascular Research, vol.87, issue.2, pp.366-374, 2010.
DOI : 10.1093/cvr/cvq013

M. F. Stins, D. Pearce, F. Di-cello, A. Erdreich-epstein, C. A. Pardo et al., Induction of Intercellular Adhesion Molecule-1 on Human Brain Endothelial Cells by HIV-1 gp120: Role of CD4 and Chemokine Coreceptors, Laboratory Investigation, vol.15, issue.12, pp.1787-1798, 2003.
DOI : 10.1084/JEM.185.9.1681

L. A. Green, C. Kim, S. K. Gupta, G. Rajashekhar, J. Rehman et al., Pentoxifylline Reduces Tumor Necrosis Factor-?? and HIV-Induced Vascular Endothelial Activation, AIDS Research and Human Retroviruses, vol.28, issue.10, pp.1207-1215, 2012.
DOI : 10.1089/aid.2011.0385

H. Yao, K. Kim, M. Duan, T. Hayashi, M. Guo et al., Cocaine hijacks sigma1 receptor to initiate induction of activated leukocyte cell adhesion molecule: Implication for increased monocyte adhesion and migration in the cns, J. Neurosci, pp.31-5942, 2011.

J. Greenwood, S. J. Heasman, J. I. Alvarez, A. Prat, R. Lyck et al., Review: Leucocyte-endothelial cell crosstalk at the blood-brain barrier: A prerequisite for successful immune cell entry to the brain, Neuropathology and Applied Neurobiology, vol.25, issue.1, pp.24-39, 2011.
DOI : 10.1111/j.1365-2990.2010.01140.x

X. Wang, L. C. Loram, K. Ramos, A. J. De-jesus, J. Thomas et al., Morphine activates neuroinflammation in a manner parallel to endotoxin, Proc. Natl. Acad. Sci. USA 2012, pp.6325-6330
DOI : 10.1073/pnas.1200130109

R. Dutta and S. Roy, Chronic morphine and HIV-1 Tat promote differential central nervous system trafficking of CD3+ and Ly6C+ immune cells in a murine Streptococcus pneumoniae infection model, Journal of Neuroinflammation, vol.10, issue.Suppl 2
DOI : 10.1186/s12974-015-0341-5

C. H. Shen, R. Y. Tsai, and C. S. Wong, Role of neuroinflammation in morphine tolerance: Effect of tumor necrosis factor-??, Acta Anaesthesiologica Taiwanica, vol.50, issue.4, pp.178-182, 2012.
DOI : 10.1016/j.aat.2012.12.004

P. M. Grace, K. M. Ramos, K. M. Rodgers, X. Wang, M. R. Hutchinson et al., Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae, Neuroscience, vol.280, pp.299-317, 2014.
DOI : 10.1016/j.neuroscience.2014.09.020

S. Leow-dyke, C. Allen, A. Denes, O. Nilsson, S. Maysami et al., Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro, Journal of Neuroinflammation, vol.19, issue.1, p.230
DOI : 10.1186/1742-2094-9-230

S. M. Seok, T. Y. Park, H. S. Park, E. J. Baik, and S. H. Lee, Fructose-1,6-bisphosphate suppresses lipopolysaccharide-induced expression of ICAM-1 through modulation of toll-like receptor-4 signaling in brain endothelial cells, International Immunopharmacology, vol.26, issue.1, pp.203-211
DOI : 10.1016/j.intimp.2015.03.029

C. Loeffler, K. Dietz, A. Schleich, H. Schlaszus, M. Stoll et al., Immune surveillance of the normal human CNS takes place in dependence of the locoregional blood-brain barrier configuration and is mainly performed by CD3+/CD8+ lymphocytes, Neuropathology, vol.172, issue.1-2, pp.230-238, 2011.
DOI : 10.1111/j.1440-1789.2010.01167.x

G. Pryce, D. Male, I. Campbell, and J. Greenwood, Factors controlling T-cell migration across rat cerebral endothelium in vitro, Journal of Neuroimmunology, vol.75, issue.1-2, pp.84-94, 1997.
DOI : 10.1016/S0165-5728(97)00006-4

G. Ryan, T. Grimes, B. Brankin, M. J. Mabruk, M. J. Hosie et al., Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers, Journal of Neurovirology, vol.49, issue.4, pp.337-345, 2005.
DOI : 10.1080/13550280500186445

C. D. Katsetos, J. E. Fincke, A. Legido, H. W. Lischner, J. P. De-chadarevian et al., Angiocentric CD3 + T-cell infiltrates in human immunodeficiency virus type 1-associated central nervous system disease in children, Clin. Diagn. Lab. Immunol, vol.6, pp.105-114, 1999.