R. 1. Buckingham, M. Meilhac, S. Zaffran, and S. , Building the mammalian heart from two sources of myocardial cells, Nature Reviews Genetics, vol.272, issue.11, pp.826-835, 2005.
DOI : 10.1016/j.tcm.2004.09.002

URL : https://hal.archives-ouvertes.fr/pasteur-00176847

T. Chen and S. Y. Dent, Chromatin modifiers and remodellers: regulators of cellular differentiation, Nature Reviews Genetics, vol.121, issue.2, pp.93-106, 2014.
DOI : 10.1016/j.molcel.2011.04.004

P. Collas, The Current State of Chromatin Immunoprecipitation, Molecular Biotechnology, vol.9, issue.1, pp.87-100, 2010.
DOI : 10.1007/s12033-009-9239-8

P. Gade and D. Kalvakolanu, Chromatin Immunoprecipitation Assay as a Tool for Analyzing Transcription Factor Activity, Methods Mol Biol, vol.809, pp.85-104, 2012.
DOI : 10.1007/978-1-61779-376-9_6

V. Scott, A. R. Clark, and K. Docherty, The Gel Retardation Assay, Methods Mol Biol, vol.31, pp.339-347, 1994.
DOI : 10.1385/0-89603-258-2:339

V. Vliet, P. Wu, S. M. Zaffran, S. Puceat, and M. , Early cardiac development: a view from stem cells to embryos, Cardiovascular Research, vol.96, issue.3, pp.352-362, 2012.
DOI : 10.1093/cvr/cvs270

J. Leschik, L. Caron, H. Yang, C. Cowan, and M. Puceat, A View of Bivalent Epigenetic Marks in Two Human Embryonic Stem Cell Lines Reveals a Different Cardiogenic Potential, Stem Cells and Development, vol.24, issue.3, pp.384-392, 2015.
DOI : 10.1089/scd.2014.0345

S. Bonn, R. P. Zinzen, C. Girardot, E. H. Gustafson, A. Perez-gonzalez et al., Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development, Nature Genetics, vol.9, issue.2, pp.148-156, 2012.
DOI : 10.1093/bioinformatics/btn505

T. K. Kim and R. Shiekhattar, Architectural and Functional Commonalities between Enhancers and Promoters, Cell, vol.162, issue.5, pp.948-959, 2015.
DOI : 10.1016/j.cell.2015.08.008

N. Abboud, T. Moore-morris, E. Hiriart, H. Yang, H. Bezerra et al., A cohesin???OCT4 complex mediates Sox enhancers to prime an early embryonic lineage, Nature Communications, vol.58, p.6749, 2015.
DOI : 10.1038/ncomms7749

J. A. Dahl and P. Collas, ChIP, a Quick and Quantitative Chromatin Immunoprecipitation Assay, Unravels Epigenetic Dynamics of Developmentally Regulated Genes in Human Carcinoma Cells, Stem Cells, vol.6, issue.4, pp.1037-1046, 2007.
DOI : 10.1634/stemcells.2006-0430

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells, Cell, vol.125, issue.2, pp.315-326, 2006.
DOI : 10.1016/j.cell.2006.02.041

J. A. Wamstad, J. M. Alexander, R. M. Truty, A. Shrikumar, F. Li et al., Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage, Cell, vol.151, issue.1, pp.206-220, 2012.
DOI : 10.1016/j.cell.2012.07.035

A. B. Stergachis, S. Neph, A. Reynolds, R. Humbert, B. Miller et al., Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes, Cell, vol.154, issue.4, pp.888-903, 2013.
DOI : 10.1016/j.cell.2013.07.020

J. Brind-'amour, S. Liu, M. Hudson, C. Chen, M. M. Karimi et al., An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations, Nat Commun, vol.6, p.6033, 2015.