R. Cappai and K. Barnham, Delineating the Mechanism of Alzheimer???s Disease A?? Peptide Neurotoxicity, Neurochemical Research, vol.19, issue.3, pp.526-558, 2008.
DOI : 10.1007/s11064-007-9469-8

D. Strooper, B. Iwatsubo, T. Wolfe, and M. , Presenilins and ?-secretase : structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med, p.6304, 2012.

U. Müller and H. Zheng, Physiological functions of APP family proteins. Cold Spring Harb Perspect Med, p.6288, 2012.

B. Yankner, L. Dawes, S. Fisher, L. Villa-komaroff, M. Oster-granite et al., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease, Science, vol.245, issue.4916, pp.417-437, 1989.
DOI : 10.1126/science.2474201

S. Shariati, D. Strooper, and B. , Redundancy and divergence in the amyloid precursor protein family, FEBS Letters, vol.158, issue.13, pp.2036-2081, 2013.
DOI : 10.1016/j.febslet.2013.05.026

A. Tkatchenko, T. Tkatchenko, J. Guggenheim, V. Verhoeven, P. Hysi et al., APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans, PLOS Genetics, vol.47, issue.Suppl 1, p.1005432, 2015.
DOI : 10.1371/journal.pgen.1005432.s016

M. Ohta, T. Kitamoto, T. Iwaki, T. Ohgami, M. Fukui et al., Immunohistochemical distribution of amyloid precursor protein during normal rat development, Developmental Brain Research, vol.75, issue.2, pp.151-61, 1993.
DOI : 10.1016/0165-3806(93)90019-7

J. Salbaum and F. Ruddle, Embryonic expression pattern of amyloid protein precursor suggests a role in differentiation of specific subsets of neurons, Journal of Experimental Zoology, vol.64, issue.2, pp.116-143, 1994.
DOI : 10.1002/jez.1402690205

S. Shariati, P. Lau, B. Hassan, U. Müller, C. Dotti et al., APLP2 regulates neuronal stem cell differentiation during cortical development, Journal of Cell Science, vol.126, issue.5, pp.1268-77, 2013.
DOI : 10.1242/jcs.122440

C. Morgans, J. Zhang, B. Jeffrey, S. Nelson, N. Burke et al., TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells, Proceedings of the National Academy of Sciences, vol.106, issue.45, pp.19174-19182, 2009.
DOI : 10.1073/pnas.0908711106

Y. Shen, J. Heimel, M. Kamermans, N. Peachey, R. Gregg et al., A Transient Receptor Potential-Like Channel Mediates Synaptic Transmission in Rod Bipolar Cells, Journal of Neuroscience, vol.29, issue.19, pp.6088-93, 2009.
DOI : 10.1523/JNEUROSCI.0132-09.2009

C. Koike, T. Obara, Y. Uriu, T. Numata, R. Sanuki et al., TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.332-339, 2010.
DOI : 10.1073/pnas.0912730107

A. Dhingra, A. Lyubarsky, M. Jiang, P. Jr, E. Birnbaumer et al., The light response of ON bipolar neurons requires G[alpha]o, J Neurosci, vol.20, issue.24, pp.9053-9061, 2000.

A. Dhingra, M. Jiang, T. Wang, A. Lyubarsky, A. Savchenko et al., Light response of retinal ON bipolar cells requires a specific splice variant of Galpha(o), J Neurosci, vol.22, issue.12, pp.4878-84, 2002.

A. Dhingra and N. Vardi, mGlu receptors in the retina, Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, vol.5, issue.5, pp.641-53, 2012.
DOI : 10.1002/wmts.43

T. Ray, K. Heath, N. Hasan, J. Noel, I. Samuels et al., GPR179 Is Required for High Sensitivity of the mGluR6 Signaling Cascade in Depolarizing Bipolar Cells, Journal of Neuroscience, vol.34, issue.18, pp.6334-6377, 2014.
DOI : 10.1523/JNEUROSCI.4044-13.2014

M. Neuillé, E. Shamieh, S. Orhan, E. Michiels, C. Antonio et al., Lrit3 Deficient Mouse (nob6): A Novel Model of Complete Congenital Stationary Night Blindness (cCSNB), PLoS ONE, vol.154, issue.3, p.90342, 2014.
DOI : 10.1371/journal.pone.0090342.s011

V. Dinet, N. An, G. Ciccotosto, J. Bruban, A. Maoui et al., APP involvement in retinogenesis of mice, Acta Neuropathologica, vol.81, issue.2, pp.351-63, 2011.
DOI : 10.1007/s00401-010-0762-2

T. Ho, K. Vessey, R. Cappai, V. Dinet, F. Mascarelli et al., Amyloid Precursor Protein Is Required for Normal Function of the Rod and Cone Pathways in the Mouse Retina, PLoS ONE, vol.132, issue.1, p.29892, 2012.
DOI : 10.1371/journal.pone.0029892.t001

M. Rosner, L. Hefetz, and F. Abraham, The Prevalence of Retinitis Pigmentosa and Congenital Stationary Night Blindness in Israel, American Journal of Ophthalmology, vol.116, issue.3, pp.373-377, 1993.
DOI : 10.1016/S0002-9394(14)71358-3

T. Dryja, Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture, American Journal of Ophthalmology, vol.130, issue.5, pp.547-63, 2000.
DOI : 10.1016/S0002-9394(00)00737-6

C. Zeitz, U. Forster, J. Neidhardt, S. Feil, S. Kälin et al., Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking, Human Mutation, vol.21, issue.8, pp.771-80, 2007.
DOI : 10.1002/humu.20499

C. Zeitz, A. Robson, and I. Audo, Congenital stationary night blindness: An analysis and update of genotype???phenotype correlations and pathogenic mechanisms, Progress in Retinal and Eye Research, vol.45, pp.58-110, 2015.
DOI : 10.1016/j.preteyeres.2014.09.001

L. Riggs and . Electrretinography, Electroretinography, Vision Research, vol.26, issue.9, pp.1443-59, 1983.
DOI : 10.1016/0042-6989(86)90167-7

G. Schubert and H. Bornschein, Beitrag zur Analyse des menschlichen Elektroretinogramms, Ophthalmologica, vol.123, issue.6, pp.396-413, 1952.
DOI : 10.1159/000301211

Y. Miyake, K. Yagasaki, M. Horiguchi, Y. Kawase, and T. Kanda, Congenital Stationary Night Blindness With Negative Electroretinogram, Archives of Ophthalmology, vol.104, issue.7, pp.1013-1033, 1986.
DOI : 10.1001/archopht.1986.01050190071042

N. Bech-hansen, M. Naylor, T. Maybaum, R. Sparkes, B. Koop et al., Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness, Nature Genetics, vol.26, issue.3, pp.319-342, 2000.
DOI : 10.1038/81619

C. Pusch, C. Zeitz, O. Brandau, K. Pesch, H. Achatz et al., The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein, Nat Genet, vol.26, issue.3, pp.324-331, 2000.

T. Dryja, T. Mcgee, E. Berson, G. Fishman, M. Sandberg et al., Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6, Proceedings of the National Academy of Sciences, vol.102, issue.13, pp.4884-4893, 2005.
DOI : 10.1073/pnas.0501233102

C. Zeitz, R. Minotti, S. Feil, G. Matyas, F. Cremers et al., Novel mutations in CACNA1F and NYX in Dutch families with X-linked congenital stationary night blindness, Mol Vis, vol.11, pp.179-83, 2005.

I. Audo, S. Kohl, B. Leroy, F. Munier, X. Guillonneau et al., TRPM1 Is Mutated in Patients with Autosomal-Recessive Complete Congenital Stationary Night Blindness, The American Journal of Human Genetics, vol.85, issue.5, pp.720-729, 2009.
DOI : 10.1016/j.ajhg.2009.10.013

Z. Li, P. Sergouniotis, M. Michaelides, D. Mackay, G. Wright et al., Recessive Mutations of the Gene TRPM1 Abrogate ON Bipolar Cell Function and Cause Complete Congenital Stationary Night Blindness in Humans, The American Journal of Human Genetics, vol.85, issue.5
DOI : 10.1016/j.ajhg.2009.10.003

C. Zeitz, S. Jacobson, C. Hamel, K. Bujakowska, M. Neuillé et al., Whole-Exome Sequencing Identifies LRIT3 Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness, The American Journal of Human Genetics, vol.92, issue.1
DOI : 10.1016/j.ajhg.2012.10.023

N. Strom, G. Nyakatura, E. Apfelstedt-sylla, H. Hellebrand, B. Lorenz et al., An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness, Nat Genet, vol.19, pp.260-263, 1998.

N. Bech-hansen, M. Naylor, T. Maybaum, W. Pearce, B. Koop et al., Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness, Nature Genetics, vol.19, issue.3, pp.264-271, 1998.
DOI : 10.1038/947

A. Vincent and E. Héon, Outer retinal structural anomaly due to frameshift mutation in CACNA1F gene, Eye, vol.17, issue.9, pp.1278-80, 2012.
DOI : 10.1017/S0952523803203059

R. Chen, J. Greenberg, M. Lazow, R. Ramachandran, L. Lima et al., Autofluorescence Imaging and Spectral-Domain Optical Coherence Tomography in Incomplete Congenital Stationary Night Blindness and Comparison With Retinitis Pigmentosa, American Journal of Ophthalmology, vol.153, issue.1, pp.143-54, 2012.
DOI : 10.1016/j.ajo.2011.06.018

C. Zeitz, B. Kloeckener-gruissem, U. Forster, S. Kohl, I. Magyar et al., Mutations in CABP4, the Gene Encoding the Ca2+-Binding Protein 4, Cause Autosomal Recessive Night Blindness, The American Journal of Human Genetics, vol.79, issue.4, pp.657-67, 2006.
DOI : 10.1086/508067

M. Bijveld, R. Florijn, A. Bergen, L. Van-den-born, M. Kamermans et al., Genotype and Phenotype of 101 Dutch Patients with Congenital Stationary Night Blindness, Ophthalmology, vol.120, issue.10, pp.2072-81, 2013.
DOI : 10.1016/j.ophtha.2013.03.002

A. Khan, M. Alrashed, and F. Alkuraya, -related retinal phenotype, British Journal of Ophthalmology, vol.97, issue.3, pp.262-267, 2013.
DOI : 10.1136/bjophthalmol-2012-302186

URL : https://hal.archives-ouvertes.fr/hal-00109339

N. Lodha, C. Loucks, C. Beaulieu, J. Parboosingh, and N. Bech-hansen, Congenital Stationary Night Blindness: Mutation Update and Clinical Variability, Adv Exp Med Biol, vol.723, pp.371-380, 2012.
DOI : 10.1007/978-1-4614-0631-0_48

X. Liu, V. Kerov, F. Haeseleer, A. Majumder, N. Artemyev et al., 1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2, Channels, vol.16, issue.6, pp.514-537, 2013.
DOI : 10.1523/JNEUROSCI.4775-09.2010

URL : https://hal.archives-ouvertes.fr/in2p3-00148681

D. Knoflach, V. Kerov, S. Sartori, G. Obermair, C. Schmuckermair et al., Cav1.4 IT mouse as model for vision impairment in human congenital stationary night blindness type 2, Channels, vol.13, issue.6, pp.503-516, 2013.
DOI : 10.1074/jbc.M109.033993

D. Bramblett, M. Pennesi, S. Wu, and M. Tsai, The Transcription Factor Bhlhb4 Is Required for Rod Bipolar Cell Maturation, Neuron, vol.43, issue.6, pp.779-93, 2004.
DOI : 10.1016/j.neuron.2004.08.032

J. Brzezinski-4th, N. Brown, A. Tanikawa, R. Bush, P. Sieving et al., Mutant Mice, Investigative Opthalmology & Visual Science, vol.46, issue.7, pp.2540-51, 2005.
DOI : 10.1167/iovs.04-1123

C. Jung, D. Atan, D. Ng, L. Ploder, S. Ross et al., Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity, Proceedings of the National Academy of Sciences, vol.112, issue.23, pp.3010-3019, 2015.
DOI : 10.1073/pnas.1505870112

M. Kondo, G. Das, R. Imai, E. Santana, T. Nakashita et al., A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness, PLOS ONE, vol.169, issue.9, p.137072, 2015.
DOI : 10.1371/journal.pone.0137072.s004

D. Aydin, S. Weyer, and U. Müller, Functions of the APP gene family in the nervous system: insights from mouse models, Experimental Brain Research, vol.81, issue.4, pp.423-457, 2012.
DOI : 10.1007/s00221-011-2861-2

A. Deutman, A. Pinckers, A. De-kerk, and A. , Dominantly Inherited Cystoid Macular Edema, American Journal of Ophthalmology, vol.82, issue.4, pp.540-548, 1976.
DOI : 10.1016/0002-9394(76)90540-7

N. George, J. Yates, and A. Moore, Clinical Features in Affected Males With X-Linked Retinoschisis, Archives of Ophthalmology, vol.114, issue.3, pp.274-80, 1996.
DOI : 10.1001/archopht.1996.01100130270007

A. Tantri, T. Vrabec, A. Cu-unjieng, A. Frost, A. Jr et al., X-linked retinoschisis: A clinical and molecular genetic review, Survey of Ophthalmology, vol.49, issue.2, pp.214-244, 2004.
DOI : 10.1016/j.survophthal.2003.12.007

Y. Miyake, M. Horiguchi, I. Ota, and N. Shiroyama, Characteristic ERG-flicker anomaly in incomplete congenital stationary night blindness, Invest Ophthalmol Vis Sci, vol.28, issue.11, pp.1816-1839, 1987.

M. Quigley, M. Roy, M. Barsoum-homsy, L. Chevrette, J. Jacob et al., On- and off-responses in the photopic electroretinogram in complete-type congenital stationary night blindness, Documenta Ophthalmologica, vol.11, issue.suppl, pp.159-65, 1996.
DOI : 10.1007/BF02583287

N. Peachey, Y. Goto, M. Ubaidi, and M. Naash, Properties of the mouse cone-mediated electroretinogram during light adaptation, Neuroscience Letters, vol.162, issue.1-2, pp.9-11, 1993.
DOI : 10.1016/0304-3940(93)90547-X

J. Gresh, P. Goletz, R. Crouch, and B. Rohrer, Structure???function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice, Visual Neuroscience, vol.20, issue.02, pp.211-231, 2003.
DOI : 10.1017/S0952523803202108

G. Williams and G. Jacobs, Cone-based vision in the aging mouse, Vision Research, vol.47, issue.15, pp.2037-2083, 2007.
DOI : 10.1016/j.visres.2007.03.023

N. Zabouri and S. Haverkamp, Calcium Channel-Dependent Molecular Maturation of Photoreceptor Synapses, PLoS ONE, vol.21, issue.5, p.63853, 2013.
DOI : 10.1371/journal.pone.0063853.t001

P. Koulen, E. Fletcher, S. Craven, D. Bredt, and H. Wässle, Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina, J Neurosci, vol.18, pp.10136-10185, 1998.

D. Sherry, M. Wang, J. Bates, and L. Frishman, Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits, The Journal of Comparative Neurology, vol.20, issue.4, pp.480-98, 2003.
DOI : 10.1002/cne.10838

M. Burmeister, J. Novak, M. Liang, S. Basu, L. Ploder et al., Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation, Nature Genetics, vol.29, issue.4, pp.376-84, 1996.
DOI : 10.1006/geno.1993.1164

I. Liu, J. Chen, L. Ploder, D. Vidgen, D. Van-der-kooy et al., Developmental expression of a novel murine homeobox gene (Chx10): Evidence for roles in determination of the neuroretina and inner nuclear layer, Neuron, vol.13, issue.2, pp.377-93, 1994.
DOI : 10.1016/0896-6273(94)90354-9

Y. Elshatory, D. Everhart, M. Deng, X. Xie, R. Barlow et al., Islet-1 Controls the Differentiation of Retinal Bipolar and Cholinergic Amacrine Cells, Journal of Neuroscience, vol.27, issue.46, pp.12707-12727, 2007.
DOI : 10.1523/JNEUROSCI.3951-07.2007

K. Tomita, S. Nakanishi, F. Guillemot, and R. Kageyama, Mash1 promotes neuronal differentiation in the retina, Genes to Cells, vol.269, issue.8, pp.765-74, 1996.
DOI : 10.1002/ar.1092120215

R. Chow, B. Snow, J. Novak, J. Looser, C. Freund et al., Vsx1, a rapidly evolving paired-like homeobox gene expressed in cone bipolar cells, Mechanisms of Development, vol.109, issue.2, pp.315-337, 2001.
DOI : 10.1016/S0925-4773(01)00585-8

J. Hatakeyama, K. Tomita, T. Inoue, and R. Kageyama, Roles of homeobox and bHLH genes in specification of a retinal cell type, Development, vol.128, pp.1313-1335, 2001.

L. Feng, X. Xie, P. Joshi, Z. Yang, K. Shibasaki et al., Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina, Development, vol.133, issue.24, pp.4815-4840, 2006.
DOI : 10.1242/dev.02664

L. Huang, F. Hu, L. Feng, X. Luo, G. Liang et al., is required for the subtype development of retinal amacrine and bipolar cells in mice, Developmental Dynamics, vol.212, issue.2, pp.279-89, 2014.
DOI : 10.1002/dvdy.24067

D. Hume, V. Perry, and S. Gordon, Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers, The Journal of Cell Biology, vol.97, issue.1, pp.253-260, 1983.
DOI : 10.1083/jcb.97.1.253

B. Stevens, N. Allen, L. Vazquez, G. Howell, K. Christopherson et al., The Classical Complement Cascade Mediates CNS Synapse Elimination, Cell, vol.131, issue.6, pp.1164-78, 2007.
DOI : 10.1016/j.cell.2007.10.036

G. Yang, Y. Gong, K. Gong, W. Jiang, E. Kwon et al., Reduced synaptic vesicle density and active zone size in mice lacking amyloid precursor protein (APP) and APP-like protein 2, Neuroscience Letters, vol.384, issue.1-2, pp.66-71, 2005.
DOI : 10.1016/j.neulet.2005.04.040

P. Wang, G. Yang, D. Mosier, P. Chang, T. Zaidi et al., Defective Neuromuscular Synapses in Mice Lacking Amyloid Precursor Protein (APP) and APP-Like Protein 2, Journal of Neuroscience, vol.25, issue.5, pp.1219-1244, 2005.
DOI : 10.1523/JNEUROSCI.4660-04.2005

X. Gu, Y. Zou, Z. Su, W. Huang, Z. Zhou et al., An Update of DIVERGE Software for Functional Divergence Analysis of Protein Family, Molecular Biology and Evolution, vol.30, issue.7, pp.1713-1722, 2013.
DOI : 10.1093/molbev/mst069

M. Klevanski, M. Saar, F. Baumkötter, S. Weyer, S. Kins et al., Differential role of APP and APLPs for neuromuscular synaptic morphology and function, Molecular and Cellular Neuroscience, vol.61, pp.201-211, 2014.
DOI : 10.1016/j.mcn.2014.06.004

M. Hoon, G. Bauer, J. Fritschy, T. Moser, B. Falkenburger et al., Neuroligin 2 Controls the Maturation of GABAergic Synapses and Information Processing in the Retina, Journal of Neuroscience, vol.29, issue.25, pp.8039-50, 2009.
DOI : 10.1523/JNEUROSCI.0534-09.2009

M. Hoon, T. Soykan, B. Falkenburger, M. Hammer, A. Patrizi et al., Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina, Proceedings of the National Academy of Sciences, vol.108, issue.7, pp.3053-3061, 2011.
DOI : 10.1073/pnas.1006946108

P. Fuerst, F. Bruce, M. Tian, W. Wei, J. Elstrott et al., DSCAM and DSCAML1 Function in Self-Avoidance in Multiple Cell Types in the Developing Mouse Retina, Neuron, vol.64, issue.4, pp.484-97, 2009.
DOI : 10.1016/j.neuron.2009.09.027

A. Ribic, X. Liu, M. Crair, and T. Biederer, Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1, Journal of Comparative Neurology, vol.104, issue.4, pp.900-920, 2014.
DOI : 10.1002/cne.23452

M. Osterfield, R. Egelund, L. Young, and J. Flanagan, Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system, Development, vol.135, issue.6, pp.1189-99, 2008.
DOI : 10.1242/dev.007401

J. Osterhout, B. Stafford, P. Nguyen, Y. Yoshihara, and A. Huberman, Contactin-4 Mediates Axon-Target Specificity and Functional Development of the Accessory Optic System, Neuron, vol.86, issue.4, pp.985-99, 2015.
DOI : 10.1016/j.neuron.2015.04.005

D. Kim, S. Ross, J. Trimarchi, J. Aach, M. Greenberg et al., Identification of molecular markers of bipolar cells in the murine retina, The Journal of Comparative Neurology, vol.273, issue.5, pp.1795-810, 2008.
DOI : 10.1002/cne.21639

D. Aydin, M. Filippov, J. Tschäpe, N. Gretz, M. Prinz et al., Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex, BMC Genomics, vol.27, issue.1, p.160, 2011.
DOI : 10.1523/JNEUROSCI.2209-07.2007

Y. Bai, K. Markham, F. Chen, R. Weerasekera, J. Watts et al., The in Vivo Brain Interactome of the Amyloid Precursor Protein, Molecular & Cellular Proteomics, vol.7, issue.1, pp.15-34, 2008.
DOI : 10.1074/mcp.M700077-MCP200

S. Bhattacharya, A. Wright, J. Clayton, W. Price, C. Phillips et al., Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28, Nature, vol.98, issue.5965, pp.253-258, 1984.
DOI : 10.1038/309253a0

A. Wright, S. Bhattacharya, M. Aldred, M. Jay, A. Carothers et al., Genetic localisation of the RP2 type of X linked retinitis pigmentosa in a large kindred., Journal of Medical Genetics, vol.28, issue.7, pp.453-460, 1991.
DOI : 10.1136/jmg.28.7.453

H. Zhang, C. Hanke-gogokhia, L. Jiang, X. Li, P. Wang et al., Mistrafficking of prenylated proteins causes retinitis pigmentosa 2, The FASEB Journal, vol.29, issue.3, pp.932-974, 2015.
DOI : 10.1096/fj.14-257915

Z. Hua, F. Emiliani, J. Nathans, F. Haeseleer, I. Sokal et al., Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems Protein phosphatase 2A dephosphorylates CaBP4 and regulates CaBP4 function, Neural Dev. Invest Ophthalmol Vis Sci, vol.1054, issue.872, pp.211214-211240, 2013.

F. Loosli, regulated Rho signaling in vertebrate retina development, Small GTPases, vol.128, issue.4, pp.242-248, 2013.
DOI : 10.1038/emboj.2011.157

M. Neuillé, C. Morgans, Y. Cao, E. Orhan, C. Michiels et al., LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation, European Journal of Neuroscience, vol.45, issue.3, pp.1966-75, 2015.
DOI : 10.1111/ejn.12959

M. Pardue, M. Mccall, M. Lavail, R. Gregg, and N. Peachey, A naturally occurring mouse model of X-linked congenital stationary night blindness, Invest Ophthalmol Vis Sci, vol.39, issue.12, pp.2443-2452, 1998.

J. Pearring, B. Jr, P. Shen, Y. Koike, C. Furukawa et al., A Role for Nyctalopin, a Small Leucine-Rich Repeat Protein, in Localizing the TRP Melastatin 1 Channel to Retinal Depolarizing Bipolar Cell Dendrites, Journal of Neuroscience, vol.31, issue.27, pp.3110060-3110066, 2011.
DOI : 10.1523/JNEUROSCI.1014-11.2011

A. Rao, R. Dallman, S. Henderson, and C. Chen, G 5 Is Required for Normal Light Responses and Morphology of Retinal ON-Bipolar Cells, Journal of Neuroscience, vol.27, issue.51, pp.14199-204, 2007.
DOI : 10.1523/JNEUROSCI.4934-07.2007

Y. Cao, I. Masuho, H. Okawa, K. Xie, J. Asami et al., Retina-Specific GTPase Accelerator RGS11/G??5S/R9AP Is a Constitutive Heterotrimer Selectively Targeted to mGluR6 in ON-Bipolar Neurons, Journal of Neuroscience, vol.29, issue.29, pp.9301-9314, 2009.
DOI : 10.1523/JNEUROSCI.1367-09.2009

M. Ishii, K. Morigiwa, M. Takao, S. Nakanishi, Y. Fukuda et al., Ectopic synaptic ribbons in dendrites of mouse retinal ON- and OFF-bipolar cells, Cell and Tissue Research, vol.57, issue.3, pp.355-75, 2009.
DOI : 10.1007/s00441-009-0880-0

Y. Tsukamoto and N. Omi, Abstract, Visual Neuroscience, vol.19, issue.01, pp.39-46, 2014.
DOI : 10.1523/JNEUROSCI.0372-07.2007

H. Zheng, M. Jiang, M. Trumbauer, D. Sirinathsinghji, R. Hopkins et al., ??-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity, Cell, vol.81, issue.4, pp.525-556, 1995.
DOI : 10.1016/0092-8674(95)90073-X

C. Koch, H. Zheng, H. Chen, M. Trumbauer, G. Thinakaran et al., Generation of APLP2 KO Mice and Early Postnatal Lethality in APLP2/APP Double KO Mice, Neurobiology of Aging, vol.18, issue.6, pp.661-670, 1997.
DOI : 10.1016/S0197-4580(97)00151-6

B. Needham, M. Wlodek, G. Ciccotosto, B. Fam, C. Masters et al., Identification of the Alzheimer's disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth, The Journal of Pathology, vol.27, issue.2, pp.155-63, 2008.
DOI : 10.1002/path.2343