C. Loubiere, Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells, Oncotarget, vol.6, issue.17, pp.15652-156613404, 2015.
DOI : 10.18632/oncotarget.3404

P. Basset, A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas, Nature, vol.348, issue.6303, pp.699-704348699, 1990.
DOI : 10.1038/348699a0

D. Pei and S. J. Weiss, Furin-dependent intracellular activation of the human stromelysin-3 zymogen, Nature, vol.375, issue.6528, pp.244-247, 1995.
DOI : 10.1038/375244a0

R. E. Vandenbroucke and C. Libert, Is there new hope for therapeutic matrix metalloproteinase inhibition? Nature reviews. Drug discovery 13, pp.904-927, 2014.

S. Manes, Identification of Insulin-like Growth Factor-binding Protein-1 as a Potential Physiological Substrate for Human Stromelysin-3, Journal of Biological Chemistry, vol.272, issue.41, pp.25706-25712, 1997.
DOI : 10.1074/jbc.272.41.25706

T. Amano, O. Kwak, L. Fu, A. Marshak, and Y. B. Shi, The matrix metalloproteinase stromelysin-3 cleaves laminin receptor at two distinct sites between the transmembrane domain and laminin binding sequence within the extracellular domain, Cell Research, vol.13, issue.3, pp.150-159, 2005.
DOI : 10.1002/(SICI)1096-9896(199608)179:4<376::AID-PATH591>3.0.CO;2-V

E. R. Motrescu, Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions, Oncogene, vol.269, issue.49, pp.6347-6355218, 2008.
DOI : 10.1038/ncpendmet0456

URL : https://hal.archives-ouvertes.fr/inserm-00350819

A. L. Gall, Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state11Edited by R. Huber, Journal of Molecular Biology, vol.307, issue.2, pp.577-5864493, 2001.
DOI : 10.1006/jmbi.2001.4493

J. Tan, Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development, Oncogene, vol.61, issue.31, pp.4050-4059434, 2014.
DOI : 10.1007/s10911-012-9251-7

C. Wolf, Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression., Proceedings of the National Academy of Sciences, vol.90, issue.5, pp.1843-1847, 1993.
DOI : 10.1073/pnas.90.5.1843

P. Basset, Stromelysin-3: a paradigm for stroma-derived factors implicated in carcinoma progression. Critical reviews in oncology, pp.43-53, 1997.

R. Masson, In Vivo Evidence That the Stromelysin-3 Metalloproteinase Contributes in a Paracrine Manner to Epithelial Cell Malignancy, The Journal of Cell Biology, vol.268, issue.6, pp.1535-1541, 1998.
DOI : 10.1111/1523-1747.ep12614846

K. L. Andarawewa, Dual stromelysin-3 function during natural mouse mammary tumor virus-ras tumor progression, Cancer Res, vol.63, pp.5844-5849, 2003.

A. Boulay, High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase, Cancer Res, vol.61, pp.2189-2193, 2001.

E. Wu, Stromelysin-3 suppresses tumor cell apoptosis in a murine model, Journal of Cellular Biochemistry, vol.90, issue.4, pp.549-555, 2001.
DOI : 10.1002/jcb.1181

K. L. Andarawewa, Stromelysin-3 Is a Potent Negative Regulator of Adipogenesis Participating to Cancer Cell-Adipocyte Interaction/Crosstalk at the Tumor Invasive Front, Cancer Research, vol.65, issue.23, pp.10862-10871, 2005.
DOI : 10.1158/0008-5472.CAN-05-1231

URL : https://hal.archives-ouvertes.fr/hal-00187353

B. Dirat, Cancer-Associated Adipocytes Exhibit an Activated Phenotype and Contribute to Breast Cancer Invasion, Cancer Research, vol.71, issue.7, pp.2455-2465, 2011.
DOI : 10.1158/0008-5472.CAN-10-3323

URL : https://hal.archives-ouvertes.fr/inserm-00819288

E. R. Motrescu and M. C. Rio, Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle, Biological chemistry, vol.389, pp.1037-1041110, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350823

M. C. Rio, N. Dali-youcef, and C. Tomasetto, Local adipocyte cancer cell paracrine loop: can " sick fat " be more detrimental? Hormone molecular biology and clinical investigation 21, pp.43-56, 2015.

P. Puigserver, A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis, Cell, vol.92, issue.6, pp.829-839, 1998.
DOI : 10.1016/S0092-8674(00)81410-5

Y. H. Tseng, New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure, Nature, vol.16, issue.7207, pp.1000-1004, 2008.
DOI : 10.1038/nature07221

H. Huang, BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage, Proceedings of the National Academy of Sciences, vol.106, issue.31, pp.12670-12675, 2009.
DOI : 10.1073/pnas.0906266106

J. Wu, Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human, Cell, vol.150, issue.2, pp.366-376016, 2012.
DOI : 10.1016/j.cell.2012.05.016

L. Z. Sharp, Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells, PLoS ONE, vol.481, issue.11, p.49452, 2012.
DOI : 10.1371/journal.pone.0049452.s005

G. Karamanlidis, A. Karamitri, K. Docherty, D. G. Hazlerigg, and M. A. Lomax, C/EBPbeta Reprograms White 3T3-L1 Preadipocytes to a Brown Adipocyte Pattern of Gene Expression, Journal of Biological Chemistry, vol.282, issue.34, pp.24660-24669, 2007.
DOI : 10.1074/jbc.M703101200

P. Seale, Transcriptional Control of Brown Fat Determination by PRDM16, Cell Metabolism, vol.6, issue.1, pp.38-54, 2007.
DOI : 10.1016/j.cmet.2007.06.001

URL : https://hal.archives-ouvertes.fr/inserm-00409781

S. W. Qian, BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis, Proceedings of the National Academy of Sciences, vol.110, issue.9, pp.798-8071215236110, 2013.
DOI : 10.1073/pnas.1215236110

D. Leroith and S. Yakar, Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nature clinical practice, Endocrinology & metabolism, vol.3, pp.302-310, 2007.

A. M. Dufresne and R. J. Smith, The Adapter Protein GRB10 Is an Endogenous Negative Regulator of Insulin-Like Growth Factor Signaling, Endocrinology, vol.146, issue.10, pp.4399-4409, 2005.
DOI : 10.1210/en.2005-0150

V. T. Samuel, Targeting Foxo1 in Mice Using Antisense Oligonucleotide Improves Hepatic and Peripheral Insulin Action, Diabetes, vol.55, issue.7, pp.2042-2050, 2006.
DOI : 10.2337/db05-0705

K. Sekine, Foxo1 links insulin signaling to C/EBP?? and regulates gluconeogenesis during liver development, The EMBO Journal, vol.269, issue.15, pp.3607-36157601784, 2007.
DOI : 10.1038/sj.emboj.7601784

V. Miksztowicz, Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucroserich diet. Nutrition, metabolism, and cardiovascular diseases, pp.294-300, 2014.

D. Bauters, I. Scroyen, M. Van-hul, H. R. Lijnen, and A. Gelatinase, Gelatinase A (MMP-2) promotes murine adipogenesis, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1850, issue.7, pp.1449-1456, 2015.
DOI : 10.1016/j.bbagen.2015.04.003

D. Bauters, M. Van-hul, H. R. Lijnen, and B. Gelatinase, Gelatinase B (MMP-9) gene silencing does not affect murine preadipocyte differentiation, Adipocyte, vol.40, issue.1, pp.50-53, 2014.
DOI : 10.1016/j.bbagen.2012.04.001

G. Derosa, Evaluation of??metalloproteinase 2??and 9??levels and??their??inhibitors in??diabetic and??healthy subjects, Diabetes & Metabolism, vol.33, issue.2, pp.129-134, 2007.
DOI : 10.1016/j.diabet.2006.11.008

C. L. Shih and K. M. Ajuwon, Inhibition of MMP-13 prevents diet-induced obesity in mice and suppresses adipogenesis in 3T3-L1 preadipocytes, Molecular Biology Reports, vol.22, issue.7, pp.10-1007, 2015.
DOI : 10.1007/s11033-015-3861-2

B. Meissburger, Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma, EMBO Molecular Medicine, vol.453, issue.11, pp.637-651, 2011.
DOI : 10.1002/emmm.201100172

B. Meissburger, L. Stachorski, E. Roder, G. Rudofsky, and C. Wolfrum, Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans, Diabetologia, vol.112, issue.6, pp.1468-1479, 2011.
DOI : 10.1007/s00125-011-2093-9

M. Federici, Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-??, Journal of Clinical Investigation, vol.115, issue.12, pp.3494-3505, 2005.
DOI : 10.1172/JCI26052

A. Wolk, Insulin-Like Growth Factor 1 and Prostate Cancer Risk: A Population-Based, Case-Control Study, JNCI Journal of the National Cancer Institute, vol.90, issue.12, pp.911-915, 1998.
DOI : 10.1093/jnci/90.12.911

J. I. Jones and D. R. Clemmons, Insulin-like growth factors and their binding proteins: biological actions, Endocrine reviews, vol.16, issue.10, pp.3-3416, 1210.

S. B. Wheatcroft and M. T. Kearney, IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends in endocrinology and metabolism, pp.153-162, 2009.

V. Nogueira, Akt Determines Replicative Senescence and Oxidative or Oncogenic Premature Senescence and Sensitizes Cells to Oxidative Apoptosis, Cancer Cell, vol.14, issue.6, pp.458-470, 2008.
DOI : 10.1016/j.ccr.2008.11.003

J. C. Rathmell, Akt-Directed Glucose Metabolism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival, Molecular and Cellular Biology, vol.23, issue.20, pp.7315-7328, 2003.
DOI : 10.1128/MCB.23.20.7315-7328.2003

R. L. Elstrom, Akt Stimulates Aerobic Glycolysis in Cancer Cells, Cancer Research, vol.64, issue.11, pp.3892-3899, 2004.
DOI : 10.1158/0008-5472.CAN-03-2904

A. M. Cypess, Insulin/IGF-I Regulation of Necdin and Brown Adipocyte Differentiation Via CREB- and FoxO1-Associated Pathways, Endocrinology, vol.152, issue.10, pp.3680-3689, 2011.
DOI : 10.1210/en.2011-1229

H. Z. Zhou, 25140 | DOI: 10.1038/srep25140 47 Transgenic MMP-2 expression induces latent cardiac mitochondrial dysfunction, Scientific RepoRts | Biochem Biophys Res Commun, vol.6, issue.358, pp.189-195, 2007.

M. G. Vander-heiden, Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells, Science, vol.329, issue.5998, pp.1492-1499, 2010.
DOI : 10.1126/science.1188015

U. E. Martinez-outschoorn, M. P. Lisanti, and F. Sotgia, Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth, Seminars in cancer biology, pp.47-60005, 2014.
DOI : 10.1016/j.semcancer.2014.01.005