L. Davidson and R. Keller, Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension, Development, vol.126, issue.20, pp.4547-56, 1999.

G. Morriss-kay, H. Wood, and W. Chen, Normal Neurulation in Mammals, Ciba Found Symp, vol.341, pp.51-63, 1994.
DOI : 10.1002/9780470514559.ch4

L. Lowery and H. Sive, Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation, Mechanisms of Development, vol.121, issue.10, pp.1189-97, 2004.
DOI : 10.1016/j.mod.2004.04.022

J. Smith and G. Schoenwolf, Further evidence of extrinsic forces in bending of the neural plate, The Journal of Comparative Neurology, vol.177, issue.2, pp.225-261, 1991.
DOI : 10.1002/cne.903070206

J. Colas and G. Schoenwolf, Towards a cellular and molecular understanding of neurulation, Developmental Dynamics, vol.215, issue.2, pp.117-162, 2001.
DOI : 10.1002/dvdy.1144

A. Reichenbach, P. Schaaf, and H. Schneider, Primary neurulation in teleosts? evidence for epithelial genesis of central nervous tissue as in other vertebrates, J Hirnforsch, vol.31, issue.2, pp.153-161, 1990.

C. Papan and J. Campos-ortega, On the formation of the neural keel and neural tube in the zebrafishDanio (Brachydanio) rerio, Roux's Archives of Developmental Biology, vol.108, issue.4, pp.178-86, 1994.
DOI : 10.1007/BF00636333

E. Hong and R. Brewster, N-cadherin is required for the polarized cell behaviors that drive neurulation in the zebrafish, Development, vol.133, issue.19, pp.3895-905, 2006.
DOI : 10.1242/dev.02560

M. Williams, Y. W. Lu, X. Sutherland, and A. , Distinct Apical and Basolateral Mechanisms Drive Planar Cell Polarity-Dependent Convergent Extension of the Mouse Neural Plate, Developmental Cell, vol.29, issue.1, pp.34-46, 2014.
DOI : 10.1016/j.devcel.2014.02.007

P. Ybot-gonzalez, D. Savery, D. Gerrelli, M. Signore, C. Mitchell et al., Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure, Development, vol.134, issue.4, pp.789-99, 2007.
DOI : 10.1242/dev.000380

R. Keller, J. Shih, and A. Sater, The cellular basis of the convergence and extension of the Xenopus neural plate, Developmental Dynamics, vol.64, issue.suppl, pp.199-217, 1992.
DOI : 10.1002/aja.1001930302

B. Ciruna, J. A. Lee, D. Mlodzik, M. Schier, and A. , Planar cell polarity signalling couples cell division and morphogenesis during neurulation, Nature, vol.130, issue.7073, pp.220-224, 2006.
DOI : 10.1038/nature04375

T. Elul and R. Keller, Monopolar Protrusive Activity: A New Morphogenic Cell Behavior in the Neural Plate Dependent on Vertical Interactions with the Mesoderm in Xenopus, Developmental Biology, vol.224, issue.1, pp.3-19, 2000.
DOI : 10.1006/dbio.2000.9746

T. Elul, M. Koehl, and R. Keller, Cellular Mechanism Underlying Neural Convergent Extension inXenopus laevisEmbryos, Developmental Biology, vol.191, issue.2, pp.243-58, 1997.
DOI : 10.1006/dbio.1997.8711

R. Sausedo, J. Smith, and G. Schoenwolf, Role of nonrandomly oriented cell division in shaping and bending of the neural plate, The Journal of Comparative Neurology, vol.10, issue.4, pp.473-88, 1997.
DOI : 10.1002/(SICI)1096-9861(19970519)381:4<473::AID-CNE7>3.0.CO;2-#

J. Wang, N. Hamblet, S. Mark, M. Dickinson, B. Brinkman et al., Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation, Development, vol.133, issue.9, pp.1767-78, 2006.
DOI : 10.1242/dev.02347

S. Siegrist and C. Doe, Microtubule-induced cortical cell polarity, Genes & Development, vol.21, issue.5, pp.483-96, 2007.
DOI : 10.1101/gad.1511207

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.61, issue.5991, pp.237-279, 1984.
DOI : 10.1038/312237a0

A. Desai and T. Mitchison, MICROTUBULE POLYMERIZATION DYNAMICS, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.83-117, 1997.
DOI : 10.1146/annurev.cellbio.13.1.83

C. Waterman-storer, R. Worthylake, B. Liu, K. Burridge, and E. Salmon, Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts, Nature Cell Biology, vol.1, issue.1, pp.45-50, 1999.
DOI : 10.1038/9018

D. Brandt and R. Grosse, Get to grips: steering local actin dynamics with IQGAPs, EMBO reports, vol.9, issue.11, pp.1019-1042, 2007.
DOI : 10.1084/JEM.190.9.1329

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247391

I. Kaverina and A. Straube, Regulation of cell migration by dynamic microtubules, Seminars in Cell & Developmental Biology, vol.22, issue.9, pp.968-74, 2011.
DOI : 10.1016/j.semcdb.2011.09.017

R. Picone, X. Ren, K. Ivanovitch, J. Clarke, R. Mckendry et al., A Polarised Population of Dynamic Microtubules Mediates Homeostatic Length Control in Animal Cells, PLoS Biology, vol.278, issue.11, p.1000542, 2010.
DOI : 10.1371/journal.pbio.1000542.s007

J. Hammarback, R. Obar, S. Hughes, and R. Vallee, MAP1B is encoded as a polyprotein that is processed to form a complex N-terminal microtubule-binding domain, Neuron, vol.7, issue.1, pp.129-168, 1991.
DOI : 10.1016/0896-6273(91)90081-A

N. Cueille, C. Blanc, S. Popa-nita, S. Kasas, S. Catsicas et al., Characterization of MAP1B heavy chain interaction with actin, Brain Research Bulletin, vol.71, issue.6, pp.610-618, 2007.
DOI : 10.1016/j.brainresbull.2006.12.003

M. Noble, S. Lewis, and N. Cowan, The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau, The Journal of Cell Biology, vol.109, issue.6, pp.3367-76, 1989.
DOI : 10.1083/jcb.109.6.3367

T. Schoenfeld, L. Mckerracher, R. Obar, and R. Vallee, MAP 1A and MAP 1B are structurally related microtubule associated proteins with distinct developmental patterns in the CNS, J Neurosci, vol.9, issue.5, pp.1712-1742, 1989.

N. Hirokawa, G. Bloom, and R. Vallee, Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system, The Journal of Cell Biology, vol.101, issue.1, pp.227-266, 1985.
DOI : 10.1083/jcb.101.1.227

R. Sato-yoshitake, Y. Shiomura, H. Miyasaka, and N. Hirokawa, Microtubule-associated protein 1B: Molecular structure, localization, and phosphorylation-dependent expression in developing neurons, Neuron, vol.3, issue.2, pp.229-267, 1989.
DOI : 10.1016/0896-6273(89)90036-6

W. Zauner, J. Kratz, J. Staunton, P. Feick, and G. Wiche, Identification of two distinct microtubule binding domains on recombinant rat MAP 1B, Eur J Cell Biol, vol.57, issue.1, pp.66-74, 1992.

M. Togel, G. Wiche, and F. Propst, Novel Features of the Light Chain of Microtubule-associated Protein MAP1B: Microtubule Stabilization, Self Interaction, Actin Filament Binding, and Regulation by the Heavy Chain, The Journal of Cell Biology, vol.57, issue.3, pp.695-707, 1998.
DOI : 10.1007/BF01181318

R. Takemura, S. Okabe, T. Umeyama, Y. Kanai, N. Cowan et al., Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau, J Cell Sci, vol.103, pp.953-64, 1992.

A. Vandecandelaere, B. Pedrotti, M. Utton, R. Calvert, and P. Bayley, Differences in the regulation of microtubule dynamics by microtubule-associated proteins MAP1B and MAP2, Cell Motility and the Cytoskeleton, vol.60, issue.2, pp.134-180, 1996.
DOI : 10.1002/(SICI)1097-0169(1996)35:2<134::AID-CM6>3.0.CO;2-A

C. Gonzalez-billault, J. Avila, and A. Caceres, Evidence for the Role of MAP1B in Axon Formation, Molecular Biology of the Cell, vol.12, issue.7, pp.2087-98, 2001.
DOI : 10.1091/mbc.12.7.2087

S. Tymanskyj, T. Scales, and P. Gordon-weeks, MAP1B enhances microtubule assembly rates and axon extension rates in developing neurons, Molecular and Cellular Neuroscience, vol.49, issue.2, pp.110-119, 2012.
DOI : 10.1016/j.mcn.2011.10.003

M. Ditella, F. Feiguin, C. N. Kosik, K. Caceres, and A. , MAP-1B/TAU functional redundancy during laminin-enhanced axonal growth, J Cell Sci, vol.109, issue.2, pp.467-77, 1996.

P. Gordon-weeks and I. Fischer, MAP1B expression and microtubule stability in growing and regenerating axons, Microscopy Research and Technique, vol.48, issue.2, pp.63-74, 2000.
DOI : 10.1002/(SICI)1097-0029(20000115)48:2<63::AID-JEMT2>3.3.CO;2-T

C. Garner, A. Garner, G. Huber, C. Kozak, and A. Matus, Molecular Cloning of Microtubule-Associated Protein 1 (MAP1A) and Microtubule-Associated Protein 5 (MAP1B): Identification of Distinct Genes and Their Differential Expression in Developing Brain, Journal of Neurochemistry, vol.9, issue.1, pp.146-54, 1990.
DOI : 10.1038/334580a0

R. Calvert and B. Anderton, A microtubule-associated protein (MAP1) which is expressed at elevated levels during development of the rat cerebellum, EMBO J, vol.4, issue.5, pp.1171-1177, 1985.

R. Tucker, C. Garner, and A. Matus, In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain, Neuron, vol.2, issue.3, pp.1245-56, 1989.
DOI : 10.1016/0896-6273(89)90309-7

A. Cheng, B. Krueger, and L. Bambrick, MAP5 expression in proliferating neuroblasts, Developmental Brain Research, vol.113, issue.1-2, pp.107-120, 1999.
DOI : 10.1016/S0165-3806(99)00006-1

E. Hong, P. Jayachandran, and R. Brewster, The polarity protein Pard3 is required for centrosome positioning during neurulation, Developmental Biology, vol.341, issue.2, pp.335-380, 2010.
DOI : 10.1016/j.ydbio.2010.01.034

A. Musch, Microtubule Organization and Function in Epithelial Cells, Traffic, vol.146, issue.1, pp.1-9, 2004.
DOI : 10.1111/j.1600-0854.2003.00149.x

Y. Wen, C. Eng, J. Schmoranzer, N. Cabrera-poch, E. Morris et al., EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nature Cell Biology, vol.114, issue.9, pp.820-850, 2004.
DOI : 10.1016/S1046-2023(02)00023-3

S. Westermann and K. Weber, Post-translational modifications regulate microtubule function, Nature Reviews Molecular Cell Biology, vol.4, issue.12, pp.938-985, 2003.
DOI : 10.1038/nrm1260

G. Gundersen, M. Kalnoski, and J. Bulinski, Distinct populations of microtubules: Tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo, Cell, vol.38, issue.3, pp.779-89, 1984.
DOI : 10.1016/0092-8674(84)90273-3

M. Tawk, C. Araya, D. Lyons, A. Reugels, G. Girdler et al., A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis, Nature, vol.15, issue.7137, pp.797-800, 2007.
DOI : 10.1038/nature05722

R. Goold, R. Owen, and P. Gordon-weeks, Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones, J Cell Sci, vol.112, pp.3373-84, 1999.

R. Owen and P. Gordon-weeks, Inhibition of glycogen synthase kinase 3?? in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones, Molecular and Cellular Neuroscience, vol.23, issue.4, pp.626-663, 2003.
DOI : 10.1016/S1044-7431(03)00095-2

A. Hall, A. Brennan, R. Goold, K. Cleverley, F. Lucas et al., Valproate Regulates GSK-3-Mediated Axonal Remodeling and Synapsin I Clustering in Developing Neurons, Molecular and Cellular Neuroscience, vol.20, issue.2, pp.257-70, 2002.
DOI : 10.1006/mcne.2002.1117

J. Clarke, Role of polarized cell divisions in zebrafish neural tube formation, Current Opinion in Neurobiology, vol.19, issue.2, pp.134-142, 2009.
DOI : 10.1016/j.conb.2009.04.010

I. Roszko, A. Sawada, and L. Solnica-krezel, Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway, Seminars in Cell & Developmental Biology, vol.20, issue.8, pp.986-97, 2009.
DOI : 10.1016/j.semcdb.2009.09.004

W. Edelmann, M. Zervas, P. Costello, L. Roback, I. Fischer et al., Neuronal abnormalities in microtubule-associated protein 1B mutant mice., Proceedings of the National Academy of Sciences, vol.93, issue.3, pp.1270-1275, 1996.
DOI : 10.1073/pnas.93.3.1270

Y. Takei, S. Kondo, A. Harada, S. Inomata, T. Noda et al., Delayed Development of Nervous System in Mice Homozygous for Disrupted Microtubule-associated Protein 1B (MAP1B) Gene, The Journal of Cell Biology, vol.9, issue.7, pp.1615-1641, 1997.
DOI : 10.1002/jnr.490350305

X. Mei, A. Sweatt, and J. Hammarback, Regulation of microtubule-associated protein 1B (MAP1B) subunit composition, Journal of Neuroscience Research, vol.57, issue.1, pp.56-64, 2000.
DOI : 10.1002/1097-4547(20001001)62:1<56::AID-JNR6>3.0.CO;2-#

N. Trivedi, P. Marsh, R. Goold, A. Wood-kaczmar, and P. Gordon-weeks, Glycogen synthase kinase-3?? phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons, Journal of Cell Science, vol.118, issue.5, pp.993-1005, 2005.
DOI : 10.1242/jcs.01697

D. Beltramo, C. Arce, and H. Barra, Tubulin, but not microtubules, is the substrate for tubulin:tyrosine ligase in mature avian erythrocytes, J Biol Chem, vol.262, issue.32, pp.15673-15680, 1987.

M. Lane and R. Keller, Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone, Development, vol.124, issue.4, pp.895-906, 1997.

K. Kwan and M. Kirschner, A microtubule-binding Rho-GEF controls cell morphology during convergentextension of Xenopus laevis, Development, vol.132, issue.20, pp.4599-610, 2005.
DOI : 10.1242/dev.02041

D. Sepich, M. Usmani, S. Pawlicki, L. Solnica-krezel, and . Wnt, Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements, Development, vol.138, issue.3, pp.543-52, 2011.
DOI : 10.1242/dev.053959

G. Schoenwolf and M. Powers, Shaping of the chick neuroepithelium during primary and secondary neurulation: Role of cell elongation, The Anatomical Record, vol.13, issue.2, pp.182-95, 1987.
DOI : 10.1002/ar.1092180214

E. Williams-masson, P. Heid, C. Lavin, and J. Hardin, The Cellular Mechanism of Epithelial Rearrangement during Morphogenesis of theCaenorhabditis elegansDorsal Hypodermis, Developmental Biology, vol.204, issue.1, pp.263-76, 1998.
DOI : 10.1006/dbio.1998.9048

B. Pedrotti and K. Islam, Dephosphorylated but not phosphorylated microtubule associated protein MAP1B binds to microfilaments, FEBS Letters, vol.162, issue.2-3, pp.2-3, 1996.
DOI : 10.1016/0014-5793(96)00520-0

C. Montenegro-venegas, E. Tortosa, S. Rosso, D. Peretti, F. Bollati et al., MAP1B Regulates Axonal Development by Modulating Rho-GTPase Rac1 Activity, MAP1B regulates axonal development by modulating Rho-GTPase Rac1 activity, pp.3518-3546, 2010.
DOI : 10.1091/mbc.E09-08-0709

T. Wittmann and C. Waterman-storer, Cell motility: can Rho GTPases and microtubules point the way?, J Cell Sci, vol.114, pp.3795-803, 2001.

A. Bershadsky, E. Vaisberg, and J. Vasiliev, Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization, Cell Motility and the Cytoskeleton, vol.24, issue.3, pp.152-160, 1991.
DOI : 10.1002/cm.970190303

G. Liao, T. Nagasaki, and G. Gundersen, Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion, J Cell Sci, vol.108, pp.3473-83, 1995.

E. Tanaka, T. Ho, and M. Kirschner, The role of microtubule dynamics in growth cone motility and axonal growth, The Journal of Cell Biology, vol.128, issue.1, pp.139-55, 1995.
DOI : 10.1083/jcb.128.1.139

I. Grigoriev, A. Chernobelskaya, and I. Vorobjev, Nocodazole, vinblastine and taxol at low concentrations affect fibroblast locomotion and saltatory movements of organelles, Membrane Cell Biol, vol.13, issue.1, pp.23-48, 1999.

M. Stone, M. Nguyen, J. Tao, D. Allender, and M. Rolls, Global Up-Regulation of Microtubule Dynamics and Polarity Reversal during Regeneration of an Axon from a Dendrite, Molecular Biology of the Cell, vol.21, issue.5, pp.767-77, 2010.
DOI : 10.1091/mbc.E09-11-0967

H. Yang, A. Ganguly, and F. Cabral, Inhibition of Cell Migration and Cell Division Correlates with Distinct Effects of Microtubule Inhibiting Drugs, Journal of Biological Chemistry, vol.285, issue.42, pp.32242-50, 2010.
DOI : 10.1074/jbc.M110.160820

E. Tortosa, N. Galjart, J. Avila, and C. Sayas, MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells, The EMBO Journal, vol.12, issue.9, pp.1293-306, 2013.
DOI : 10.1083/jcb.200901036

S. Geraldo, U. Khanzada, M. Parsons, J. Chilton, and P. Gordon-weeks, Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis, Nature Cell Biology, vol.93, issue.10, pp.1181-1190, 2008.
DOI : 10.1038/ncb1778

A. Meixner, S. Haverkamp, H. Wassle, S. Fuhrer, J. Thalhammer et al., Map1b Is Required for Axon Guidance and Is Involved in the Development of the Central and Peripheral Nervous System, The Journal of Cell Biology, vol.451, issue.6, pp.1169-78, 2000.
DOI : 10.1016/S0042-6989(97)00300-3

Y. Takei, J. Teng, A. Harada, and N. Hirokawa, Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, Neuroscience Research, vol.38, issue.5, pp.989-1000, 2000.
DOI : 10.1016/S0168-0102(00)81476-5

J. Teng, Y. Takei, A. Harada, T. Nakata, J. Chen et al., Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization, The Journal of Cell Biology, vol.12, issue.1, pp.65-76, 2001.
DOI : 10.1016/S0168-0102(97)00088-6

C. Kimmel, W. Ballard, S. Kimmel, B. Ullmann, and T. Schilling, Stages of embryonic development of the zebrafish, Developmental Dynamics, vol.102, issue.3, pp.253-310, 1995.
DOI : 10.1002/aja.1002030302

S. Megason and S. Fraser, Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development, Mechanisms of Development, vol.120, issue.11, pp.1407-1427, 2003.
DOI : 10.1016/j.mod.2003.07.005

X. Wei, Y. Cheng, Y. Luo, X. Shi, S. Nelson et al., The zebrafish Pard3 ortholog is required for separation of the eye fields and retinal lamination, Developmental Biology, vol.269, issue.1, pp.286-301, 2004.
DOI : 10.1016/j.ydbio.2004.01.017

H. Lee, J. Tsai, P. Liao, W. Tsai, K. Lin et al., Glycogen synthase kinase 3?? and 3?? have distinct functions during cardiogenesis of zebrafish embryo, BMC Developmental Biology, vol.7, issue.1, p.93, 2007.
DOI : 10.1186/1471-213X-7-93

J. Eisen and J. Smith, Controlling morpholino experiments: don't stop making antisense, Development, vol.135, issue.10, pp.1735-1778, 2008.
DOI : 10.1242/dev.001115

URL : http://dev.biologists.org/cgi/content/short/135/10/1735

H. Kemp, A. Carmany-rampey, and C. Moens, Generating Chimeric Zebrafish Embryos by Transplantation, Journal of Visualized Experiments, vol.29, issue.29, 2009.
DOI : 10.3791/1394

P. Jayachandran and R. Brewster, Labeling and Imaging Cells in the Zebrafish Hindbrain, Journal of Visualized Experiments, issue.41, 2010.
DOI : 10.3791/1976

M. Westerfield, The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 2000.

C. Thisse, B. Thisse, T. Schilling, and J. Postlethwait, Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos, Development, vol.119, issue.4, pp.1203-1218, 1993.

V. Link, A. Shevchenko, and C. Heisenberg, Proteomics of early zebrafish embryos, BMC Dev Biol, vol.61, 2006.