D. Selkoe, Alzheimer's Disease, Cold Spring Harbor Perspectives in Biology, vol.3, issue.7, pp.741-66, 2001.
DOI : 10.1101/cshperspect.a004457

J. Hardy and D. Allsop, Amyloid deposition as the central event in the aetiology of Alzheimer's disease, Trends in Pharmacological Sciences, vol.12, issue.10, pp.383-391, 1991.
DOI : 10.1016/0165-6147(91)90609-V

S. Oddo, A. Caccamo, J. Shepherd, M. Murphy, T. Golde et al., Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles, Neuron, vol.39, issue.3, pp.409-430, 2003.
DOI : 10.1016/S0896-6273(03)00434-3

T. Jonsson, J. Atwal, S. Steinberg, J. Snaedal, P. Jonsson et al., A mutation in APP protects against Alzheimer???s disease and age-related cognitive decline, Nature, vol.43, issue.7409, pp.96-105, 2012.
DOI : 10.1038/nature11283

M. Hick, U. Herrmann, S. Weyer, J. Mallm, J. Tschape et al., Acute function of secreted amyloid precursor protein fragment APPs?? in synaptic plasticity, Acta Neuropathologica, vol.8, issue.4, pp.21-37, 2015.
DOI : 10.1007/s00401-014-1368-x

E. Doyle, M. Bruce, K. Breen, D. Smith, B. Anderton et al., Intraventricular infusions of antibodies to amyloid-??-protein precursor impair the acquisition of a passive avoidance response in the rat, Neuroscience Letters, vol.115, issue.1, pp.97-102, 1990.
DOI : 10.1016/0304-3940(90)90524-D

G. Huber, J. Martin, J. Loffler, and J. Moreau, Involvement of amyloid precursor protein in memory formation in the rat: an indirect antibody approach, Brain Research, vol.603, issue.2, pp.348-52, 1993.
DOI : 10.1016/0006-8993(93)91261-P

S. Weyer, M. Zagrebelsky, U. Herrmann, M. Hick, L. Ganss et al., Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPs?? expression, Acta Neuropathologica Communications, vol.460, issue.1, pp.36-46, 2014.
DOI : 10.1016/j.neulet.2009.05.040

K. Hsiao, P. Chapman, S. Nilsen, C. Eckman, Y. Harigaya et al., Correlative Memory Deficits, A?? Elevation, and Amyloid Plaques in Transgenic Mice, Science, vol.274, issue.5284, pp.99-102, 1996.
DOI : 10.1126/science.274.5284.99

P. Moran, L. Higgins, B. Cordell, and P. Moser, Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein., Proceedings of the National Academy of Sciences, vol.92, issue.12, pp.5341-5346, 1995.
DOI : 10.1073/pnas.92.12.5341

T. Saito, Y. Matsuba, N. Mihira, J. Takano, P. Nilsson et al., Single App knock-in mouse models of Alzheimer's disease, Nature Neuroscience, vol.97, issue.5, pp.661-664, 2014.
DOI : 10.1038/nn.3697

B. Darocha-souto, T. Scotton, M. Coma, A. Serrano-pozo, T. Hashimoto et al., Brain Oligomeric ??-Amyloid but Not Total Amyloid Plaque Burden Correlates With Neuronal Loss and Astrocyte Inflammatory Response in Amyloid Precursor Protein/Tau Transgenic Mice, Journal of Neuropathology & Experimental Neurology, vol.70, issue.5, pp.360-76, 2011.
DOI : 10.1097/NEN.0b013e318217a118

I. Cheng, K. Scearce-levie, J. Legleiter, J. Palop, H. Gerstein et al., Accelerating Amyloid-?? Fibrillization Reduces Oligomer Levels and Functional Deficits in Alzheimer Disease Mouse Models, Journal of Biological Chemistry, vol.282, issue.33, pp.23818-23846, 2007.
DOI : 10.1074/jbc.M701078200

T. Tomiyama, T. Nagata, H. Shimada, R. Teraoka, A. Fukushima et al., A new amyloid ?? variant favoring oligomerization in Alzheimer's-type dementia, Annals of Neurology, vol.61, issue.3, pp.377-87, 2008.
DOI : 10.1002/ana.21321

M. Storandt, M. Mintun, D. Head, and J. Morris, Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition, Arch Neurol, vol.66, issue.12, pp.1476-81, 2009.

J. Morris, C. Roe, E. Grant, D. Head, M. Storandt et al., Pittsburgh Compound B Imaging and Prediction of Progression From Cognitive Normality to Symptomatic Alzheimer Disease, Archives of Neurology, vol.66, issue.12, pp.1469-75, 2009.
DOI : 10.1001/archneurol.2009.269

P. Gibson, FORM AND DISTRIBUTION OF SENILE PLAQUES SEEN IN SILVER IMPREGNATED SECTIONS IN THE BRAINS OF INTELLECTUALLY NORMAL ELDERLY PEOPLE AND PEOPLE WITH ALZHEIMER-TYPE DEMENTIA, Neuropathology and Applied Neurobiology, vol.3, issue.5, pp.379-89, 1983.
DOI : 10.1016/0022-510X(82)90155-1

I. Mackenzie, R. Mclachlan, C. Kubu, and L. Miller, Prospective neuropsychological assessment of nondemented patients with biopsy proven senile plaques, Neurology, vol.46, issue.2, pp.425-434, 1996.
DOI : 10.1212/WNL.46.2.425

D. Selkoe, Alzheimer's Disease Is a Synaptic Failure, Science, vol.298, issue.5594, pp.789-91, 2002.
DOI : 10.1126/science.1074069

W. Klein, G. Krafft, and C. Finch, Targeting small A?? oligomers: the solution to an Alzheimer's disease conundrum?, Trends in Neurosciences, vol.24, issue.4, pp.219-243, 2001.
DOI : 10.1016/S0166-2236(00)01749-5

S. Salloway, R. Sperling, N. Fox, K. Blennow, W. Klunk et al., Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer's Disease, New England Journal of Medicine, vol.370, issue.4, pp.322-355, 2014.
DOI : 10.1056/NEJMoa1304839

J. Cummings, T. Morstorf, K. Zhong, D. Young, K. Baer et al., Alzheimer's disease drug-development pipeline: few candidates, frequent failures Development and optimization of adeno-associated virus vector transfer into the central nervous system, Alzheimers Res Ther. Methods Mol Med, vol.676, issue.4, pp.221-257, 2003.

M. Sauvee, G. Didierlaurent, C. Latarche, M. Escanye, J. Olivier et al., Additional use of abeta(4)(2)/abeta(4)(0) ratio with cerebrospinal fluid biomarkers P-tau and abeta(4)(2) increases the level of evidence of Alzheimer's disease pathophysiological process in routine practice, JAD, vol.41, issue.2, pp.377-86, 2014.

M. Zerah, F. Piguet, M. Colle, R. S. Deschamps, J. Deniaud et al., Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates, Human Gene Therapy Clinical Development, vol.26, issue.2
DOI : 10.1089/humc.2014.139

URL : https://hal.archives-ouvertes.fr/hal-01164426

J. Wanngren, J. Franberg, A. Svensson, H. Laudon, F. Olsson et al., The Large Hydrophilic Loop of Presenilin 1 Is Important for Regulating ??-Secretase Complex Assembly and Dictating the Amyloid ?? Peptide (A??) Profile without Affecting Notch Processing, Journal of Biological Chemistry, vol.285, issue.12, pp.8527-8563, 2010.
DOI : 10.1074/jbc.M109.055590

J. Hardy and G. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, issue.5054, pp.184-189, 1992.
DOI : 10.1126/science.1566067

J. Jankowsky, D. Fadale, J. Anderson, G. Xu, V. Gonzales et al., Mutant presenilins specifically elevate the levels of the 42 residue ??-amyloid peptide in vivo: evidence for augmentation of a 42-specific ?? secretase, Human Molecular Genetics, vol.13, issue.2, pp.159-70, 2004.
DOI : 10.1093/hmg/ddh019

M. Sweeney, A. Sagare, and B. Zlokovic, Cerebrospinal Fluid Biomarkers of Neurovascular Dysfunction in Mild Dementia and Alzheimer'S Disease, Journal of Cerebral Blood Flow & Metabolism, vol.337, issue.7, pp.1055-68, 2015.
DOI : 10.1212/WNL.0000000000000809

M. Murray, S. Przybelski, T. Lesnick, A. Liesinger, A. Spychalla et al., Early Alzheimer's Disease Neuropathology Detected by Proton MR Spectroscopy, Journal of Neuroscience, vol.34, issue.49, pp.16247-55, 2014.
DOI : 10.1523/JNEUROSCI.2027-14.2014

S. Scheff, D. Price, F. Schmitt, S. Dekosky, and E. Mufson, Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment, Neurology, vol.68, issue.18, 2007.
DOI : 10.1212/01.wnl.0000260698.46517.8f

E. Masliah, M. Alford, R. Deteresa, M. Mallory, and L. Hansen, Deficient glutamate tranport is associated with neurodegeneration in Alzheimer's disease, Annals of Neurology, vol.7, issue.5, pp.759-66, 1996.
DOI : 10.1002/ana.410400512

D. Proctor, E. Coulson, and P. Dodd, Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology, JAD, vol.213233, issue.3, pp.795-81110, 2010.

I. Schneider, D. Reverse, I. Dewachter, L. Ris, N. Caluwaerts et al., Mutant Presenilins Disturb Neuronal Calcium Homeostasis in the Brain of Transgenic Mice, Decreasing the Threshold for Excitotoxicity and Facilitating Long-term Potentiation, Journal of Biological Chemistry, vol.276, issue.15, pp.11539-11583, 2001.
DOI : 10.1074/jbc.M010977200

K. Duff, C. Eckman, C. Zehr, X. Yu, C. Prada et al., Increased amyloid-??42(43) in brains of mice expressing mutant presenilin 1, Nature, vol.383, issue.6602, pp.710-713, 1996.
DOI : 10.1038/383710a0

J. Walker, S. Fowler, D. Miller, A. Sun, G. Weisman et al., Spatial learning and memory impairment and increased locomotion in a transgenic amyloid precursor protein mouse model of Alzheimer's disease, Behavioural Brain Research, vol.222, issue.1, pp.169-75, 2011.
DOI : 10.1016/j.bbr.2011.03.049

E. Karran, M. Mercken, D. Strooper, and B. , The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics, Nature Reviews Drug Discovery, vol.16, issue.9, pp.698-712, 2011.
DOI : 10.1038/nrd3505

D. Quon, Y. Wang, R. Catalano, J. Scardina, K. Murakami et al., Formation of ??-amyloid protein deposits in brains of transgenic mice, Nature, vol.352, issue.6332, pp.239-280, 1991.
DOI : 10.1038/352239a0

L. Higgins, R. Catalano, D. Quon, and C. B. , Transgenic Mice Expressing Human ??-APP751, But Not Mice Expressing ??-APP695, Display Early Alzheimer's Disease-like Histopathologya, Annals of the New York Academy of Sciences, vol.352, issue.1, pp.224-231, 1993.
DOI : 10.1111/j.1749-6632.1993.tb23056.x

S. Sinha and I. Lieberburg, Cellular mechanisms of beta -amyloid production and secretion, Proceedings of the National Academy of Sciences, vol.96, issue.20, pp.11049-53, 1999.
DOI : 10.1073/pnas.96.20.11049

S. Sudoh, Y. Kawamura, S. Sato, R. Wang, T. Saido et al., Presenilin 1 Mutations Linked to Familial Alzheimer's Disease Increase the Intracellular Levels of Amyloid ??-Protein 1-42 and Its N-Terminally Truncated Variant(s) Which Are Generated at Distinct Sites, Journal of Neurochemistry, vol.71, issue.4, pp.1535-1578, 1998.
DOI : 10.1046/j.1471-4159.1998.71041535.x

D. Jabaudon, K. Shimamoto, Y. Yasuda-kamatani, M. Scanziani, B. Gahwiler et al., Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin, Proceedings of the National Academy of Sciences, vol.96, issue.15, pp.8733-8741, 1999.
DOI : 10.1073/pnas.96.15.8733

L. Meur, K. Galante, M. Angulo, M. Audinat, and E. , Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus, The Journal of Physiology, vol.64, issue.2, pp.373-83, 2007.
DOI : 10.1113/jphysiol.2006.123570

S. Li, J. M. Koeglsperger, T. Shepardson, N. Shankar, G. Selkoe et al., Soluble A?? Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors, Journal of Neuroscience, vol.31, issue.18, pp.6627-6665, 2011.
DOI : 10.1523/JNEUROSCI.0203-11.2011

A. Schallier, I. Smolders, D. Van-dam, E. Loyens, D. Deyn et al., Region-and age-specific changes in glutamate transport in the AbetaPP23 mouse model for Alzheimer's disease, JAD, vol.24, issue.2, pp.287-300, 2011.

A. Scimemi, J. Meabon, R. Woltjer, J. Sullivan, J. Diamond et al., Amyloid-??1-42 Slows Clearance of Synaptically Released Glutamate by Mislocalizing Astrocytic GLT-1, Journal of Neuroscience, vol.33, issue.12, pp.5312-5320, 2013.
DOI : 10.1523/JNEUROSCI.5274-12.2013

M. Talantova, S. Sanz-blasco, X. Zhang, P. Xia, M. Akhtar et al., A?? induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss, Proceedings of the National Academy of Sciences, vol.110, issue.27, pp.2518-2545, 2013.
DOI : 10.1073/pnas.1306832110

S. Epelbaum, I. Youssef, P. Lacor, P. Chaurand, E. Duplus et al., Acute amnestic encephalopathy in amyloid-?? oligomer???injected mice is due to their widespread diffusion in??vivo, Neurobiology of Aging, vol.36, issue.6, pp.2043-52, 2015.
DOI : 10.1016/j.neurobiolaging.2015.03.005

R. Czajkowski, B. Jayaprakash, B. Wiltgen, T. Rogerson, M. Guzman-karlsson et al., Encoding and storage of spatial information in the retrosplenial cortex, Proceedings of the National Academy of Sciences, vol.111, issue.23, pp.8661-8667, 2014.
DOI : 10.1073/pnas.1313222111

K. Radwanska, G. Schenatto-pereira, M. Ziolkowska, K. Lukasiewicz, and K. Giese, Mapping fear memory consolidation and extinction-specific expression of JunB, Neurobiology of Learning and Memory, vol.125, pp.106-118, 2015.
DOI : 10.1016/j.nlm.2015.08.007

C. Dejean, J. Courtin, R. Rozeske, M. Bonnet, V. Dousset et al., Neuronal Circuits for Fear Expression and Recovery: Recent Advances and Potential Therapeutic Strategies, Biological Psychiatry, vol.78, issue.5, pp.298-306, 2015.
DOI : 10.1016/j.biopsych.2015.03.017

C. Tackenberg, S. Grinschgl, A. Trutzel, A. Santuccione, M. Frey et al., NMDA receptor subunit composition determines beta-amyloidinduced neurodegeneration and synaptic loss, Cell Death Dis, vol.4, 2013.

T. Tokutake, K. Kasuga, R. Yajima, Y. Sekine, T. Tezuka et al., Hyperphosphorylation of Tau Induced by Naturally Secreted Amyloid-?? at Nanomolar Concentrations Is Modulated by Insulin-dependent Akt-GSK3?? Signaling Pathway, Journal of Biological Chemistry, vol.287, issue.42, pp.35222-35255, 2012.
DOI : 10.1074/jbc.M112.348300

J. Augustinack, A. Schneider, E. Mandelkow, and B. Hyman, Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease, Acta Neuropathologica, vol.103, issue.1, pp.26-35, 2001.
DOI : 10.1007/s004010100423

J. Caldwell, M. Klevanski, M. Saar, and U. Muller, Roles of the amyloid precursor protein family in the peripheral nervous system, Mechanisms of Development, vol.130, issue.6-8, pp.433-479, 2013.
DOI : 10.1016/j.mod.2012.11.001

D. Kogel, T. Deller, and C. Behl, Roles of amyloid precursor protein family members in neuroprotection, stress signaling and aging, Experimental Brain Research, vol.81, issue.3-4, pp.3-4471, 2012.
DOI : 10.1007/s00221-011-2932-4

A. Volianskis, R. Kostner, M. Molgaard, S. Hass, and M. Jensen, Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1??E9-deleted transgenic mice model of ??-amyloidosis, Neurobiology of Aging, vol.31, issue.7, pp.1173-87, 2010.
DOI : 10.1016/j.neurobiolaging.2008.08.005

A. Berger, S. Lorain, J. C. Desrosiers, M. Peccate, C. Voit et al., Repair of Rhodopsin mRNA by Spliceosome-Mediated RNA Trans-Splicing: A New Approach for Autosomal Dominant Retinitis Pigmentosa, Molecular Therapy, vol.23, issue.5
DOI : 10.1038/mt.2015.11

W. Anderson and G. Collingridge, The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events, Journal of Neuroscience Methods, vol.108, issue.1, pp.71-83, 2001.
DOI : 10.1016/S0165-0270(01)00374-0