G. Román, T. Erkinjuntti, A. Wallin, L. Pantoni, and H. Chui, Subcortical ischaemic vascular dementia, The Lancet Neurology, vol.1, issue.7, pp.426-436, 2002.
DOI : 10.1016/S1474-4422(02)00190-4

H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-lasserve, M. Bousser et al., ): 643-653. 3. Selnes OA, Vinters HV. Vascular cognitive impairment, Lancet Neurology Nature Clinical Practice Neurology, vol.8, issue.4, pp.538-547, 2006.

L. Pantoni, Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges, The Lancet Neurology, vol.9, issue.7, pp.689-701, 2010.
DOI : 10.1016/S1474-4422(10)70104-6

L. Kessler, H. Barnhart, A. Buckler, K. Choudhury, M. Kondratovich et al., The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions. Statistical methods in medical research, pp.9-26, 2015.

M. Teipel, S. Dietrich, O. Schönberg, S. Jessen, F. Heun et al., Reliability of brain volumes from multicenter MRI acquisition: A calibration study Multicenter assessment of reliability of cranial MRI, Human Brain Mapping Neurobiology of Aging Smith SM, vol.22, issue.9, pp.312-320, 2004.

J. Jovicich, S. Czanner, X. Han, D. Salat, A. Van-der-kouwe et al., MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths, NeuroImage, vol.46, issue.1, pp.177-192, 2009.
DOI : 10.1016/j.neuroimage.2009.02.010

A. Kouwe, Reliability of MRI-derived cortical and subcortical morphometric measures: effects of pulse sequence, voxel geometry, and parallel imaging, NeuroImage, vol.44, issue.13, pp.1324-1357, 2009.

F. Kruggel, J. Turner, and L. Muftuler, Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort, NeuroImage, vol.49, issue.3, pp.2123-2133, 2010.
DOI : 10.1016/j.neuroimage.2009.11.006

H. Huppertz, J. Kröll-seger, S. Klöppel, R. Ganz, and J. Kassubek, Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures, NeuroImage, vol.49, issue.3, pp.2216-2224, 2010.
DOI : 10.1016/j.neuroimage.2009.10.066

M. Sampat, B. Healy, D. Meier, E. Dell-'oglio, M. Liguori et al., Disease modeling in multiple sclerosis: Assessment and quantification of sources of variability in brain parenchymal fraction measurements, NeuroImage, vol.52, issue.4, pp.1367-73, 2010.
DOI : 10.1016/j.neuroimage.2010.03.075

M. Shokouhi, A. Barnes, J. Suckling, T. Moorhead, D. Brennan et al., Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa A comparison of MR based segmentation methods for measuring brain atrophy progression, BMC Med Imaging Neuroimage, vol.11, issue.20, pp.760-768, 2011.

B. Landman, A. Huang, A. Gifford, D. Vikram, I. Lim et al., Multi-parametric neuroimaging reproducibility: A 3-T resource study, NeuroImage, vol.54, issue.4, pp.2854-66, 2011.
DOI : 10.1016/j.neuroimage.2010.11.047

S. Chalavi, A. Simmons, H. Dijkstra, G. Barker, and A. Reinders, Quantitative and qualitative assessment of structural magnetic resonance imaging data in a two-center study, BMC Medical Imaging, vol.22, issue.4, p.22, 2012.
DOI : 10.1002/hbm.20040

X. Wei, S. Warfield, K. Zou, Y. Wu, X. Li et al., Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy, Journal of Magnetic Resonance Imaging, vol.16, issue.2, pp.203-212, 2002.
DOI : 10.1002/jmri.10053

N. Sicotte, R. Voskuhl, S. Bouvier, R. Klutch, M. Cohen et al., Comparison of Multiple Sclerosis Lesions at 1.5 and 3.0 Tesla, Investigative Radiology, vol.38, issue.7, pp.423-427, 2003.
DOI : 10.1097/01.RLI.0000065426.07178.f1

J. Theysohn, O. Kraff, S. Maderwald, M. Barth, S. Ladd et al., 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia, Journal of Magnetic Resonance Imaging, vol.17, issue.Pt 8, pp.782-791, 2011.
DOI : 10.1002/jmri.22513

J. Ramirez, C. Scott, and S. Black, A Short-Term Scan???Rescan Reliability Test Measuring Brain Tissue and Subcortical Hyperintensity Volumetrics Obtained Using the Lesion Explorer Structural MRI Processing Pipeline, Brain Topography, vol.34, issue.1, pp.35-43, 2013.
DOI : 10.1007/s10548-012-0228-z

C. Stehling, H. Wersching, S. Kloska, P. Kirchhof, J. Ring et al., Detection of Asymptomatic Cerebral Microbleeds, Academic Radiology, vol.15, issue.7, pp.895-900, 2008.
DOI : 10.1016/j.acra.2008.01.013

M. Conijn, M. Geerlings, G. Biessels, T. Takahara, T. Witkamp et al., Cerebral Microbleeds on MR Imaging: Comparison between 1.5 and 7T Wide variation in definition, detection, and description of lacunar lesions on imaging Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update, MR signal abnormalities at, pp.1043-1049, 2011.

R. Schmidt, F. Fazekas, G. Kleinert, H. Offenbacher, K. Gindl et al., Magnetic Resonance Imaging Signal Hyperintensities in the Deep and Subcortical White Matter, Archives of Neurology, vol.49, issue.8, pp.825-832, 1992.
DOI : 10.1001/archneur.1992.00530320049011

P. Maillard, N. Delcroix, F. Crivello, C. Dufouil, S. Gicquel et al., An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases, Neuroradiology, vol.27, issue.Suppl 3, pp.31-42, 2008.
DOI : 10.1007/s00234-007-0312-3

URL : https://hal.archives-ouvertes.fr/inserm-00180711

M. Yoshita, E. Fletcher, and C. Decarli, Current concepts of analysis of cerebral white matter hyperintensities on magnetic resonance imaging Topics in magnetic resonance imaging, TMRI, vol.16, issue.39, pp.399-407, 2005.

J. Wardlaw, W. Brindle, A. Casado, K. Shuler, M. Henderson et al., A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research, European Radiology, vol.361, issue.11, pp.2295-303, 2012.
DOI : 10.1007/s00330-012-2500-8

P. Polak, C. Magnano, R. Zivadinov, and G. Poloni, 3D FLAIRED: 3D fluid attenuated inversion recovery for enhanced detection of lesions in multiple sclerosis, Magnetic Resonance in Medicine, vol.28, issue.1 Suppl, pp.874-881, 2012.
DOI : 10.1002/mrm.23289

J. Ramirez, C. Berezuk, A. Mcneely, C. Scott, F. Gao et al., Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study Journal of Alzheimer's disease Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging, JAD Med Image Anal, vol.43, issue.45, pp.415-439, 2013.

M. Filippi, M. Horsfield, A. Campi, S. Mammi, C. Pereira et al., Resolution-dependent estimates of lesion volumes in magnetic resonance imaging studies of the brain in multiple sclerosis, Annals of Neurology, vol.193, issue.5, pp.749-754, 1995.
DOI : 10.1002/ana.410380509

V. Hernandez, M. Ghandour, D. Gonzales-castro, V. Munoz-maniega, S. Armitage et al., On the computational assessment of white matter hyperintensity progression: difficulties in method selection and bias field correction performance on images with significant white matter pathology. Neuroradiology in press, p.47

Y. Wang, J. Catindig, S. Hilal, H. Soon, E. Ting et al., Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts, NeuroImage, vol.60, issue.4, pp.2379-2388, 2012.
DOI : 10.1016/j.neuroimage.2012.02.034

D. Hervé, O. Godin, C. Dufouil, A. Viswanathan, E. Jouvent et al., Three-Dimensional MRI Analysis of Individual Volume of Lacunes in CADASIL, Stroke, vol.40, issue.1, pp.124-128, 2009.
DOI : 10.1161/STROKEAHA.108.520825

H. Mdel, C. Piper, R. Wang, X. Deary, I. Wardlaw et al., Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: a systematic review, Journal of magnetic resonance imaging : JMRI, vol.38, issue.52, pp.774-85, 2013.

G. Potter, F. Chappell, Z. Morris, and J. Wardlaw, Rating Method for Dilated Virchow-Robin Spaces on Magnetic Resonance Imaging Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability, Stroke Cerebrovascular diseases, vol.44, issue.54, pp.1732-533, 2013.

X. Zong, S. Park, D. Shen, and W. Lin, Visualization of perivascular spaces in the human brain at 7T: sequence optimization and morphology characterization, NeuroImage, vol.125, 2015.
DOI : 10.1016/j.neuroimage.2015.10.078

C. Berezuk, J. Ramirez, F. Gao, C. Scott, M. Huroy et al., Virchow-Robin Spaces: Correlations with Polysomnography-Derived Sleep Parameters, SLEEP, vol.38, issue.6, pp.853-861, 2015.
DOI : 10.5665/sleep.4726

S. Warach, Cerebral microbleeds: a guide to detection and interpretation, Lancet neurology de Laat KF, vol.8, issue.58, pp.165-174, 2009.

S. Gregoire, G. Scheffler, H. Jager, T. Yousry, M. Brown et al., Strictly Lobar Microbleeds Are Associated With Executive Impairment in Patients With Ischemic Stroke or Transient Ischemic Attack, Stroke, vol.44, issue.5, pp.1267-72, 2013.
DOI : 10.1161/STROKEAHA.111.000245

C. Cordonnier, G. Potter, C. Jackson, F. Doubal, S. Keir et al., Improving Interrater Agreement About Brain Microbleeds: Development of the Brain Observer MicroBleed Scale (BOMBS), Stroke, vol.40, issue.1, pp.94-99, 2009.
DOI : 10.1161/STROKEAHA.108.526996

S. Barnes, E. Haacke, M. Ayaz, A. Boikov, W. Kirsch et al., Semiautomated detection of cerebral microbleeds in magnetic resonance images, Magnetic Resonance Imaging, vol.29, issue.6, pp.844-852, 2011.
DOI : 10.1016/j.mri.2011.02.028

M. Seghier, M. Kolanko, A. Leff, H. Jager, S. Gregoire et al., Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images, PLoS ONE, vol.304, issue.3, p.67, 2011.
DOI : 10.1371/journal.pone.0017547.s001

F. Meriaudeau, L. Giancardo, V. Villemagne, C. Rowe, and P. Yates, Semi-Automated Detection of Cerebral Microbleeds on 3.0 T MR Images, PLoS One, vol.8, issue.6, 2013.

M. Schrag, G. Mcauley, J. Pomakian, A. Jiffry, S. Tung et al., Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study, Acta Neuropathologica, vol.154, issue.2, pp.291-302, 2010.
DOI : 10.1007/s00401-009-0615-z

D. Guio, F. Benoit-cattin, H. Davenel, and A. , Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.22, issue.5, pp.261-71, 2008.
DOI : 10.1007/s10334-008-0119-1

E. Haacke, Y. Xu, Y. Cheng, and J. Reichenbach, Susceptibility weighted imaging (SWI), Magnetic Resonance in Medicine, vol.18, issue.3, pp.612-618, 2004.
DOI : 10.1002/mrm.20198

A. Cheng, S. Batool, C. Mccreary, M. Lauzon, R. Frayne et al., Susceptibility-Weighted Imaging is More Reliable Than T2*-Weighted Gradient-Recalled Echo MRI for Detecting Microbleeds, Stroke, vol.44, issue.10, pp.2782-2788, 2013.
DOI : 10.1161/STROKEAHA.113.002267

H. Jager and D. Werring, Clinical Relevance of Improved Microbleed Detection by Susceptibility-Weighted Magnetic Resonance Imaging Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia, Stroke Experimental gerontology, vol.42, issue.78, pp.1894-1900, 2011.

T. Liu, K. Surapaneni, M. Lou, L. Cheng, P. Spincemaille et al., Cerebral Microbleeds: Burden Assessment by Using Quantitative Susceptibility Mapping, Radiology, vol.262, issue.1, pp.269-278, 2012.
DOI : 10.1148/radiol.11110251

H. Jokinen, J. Lipsanen, R. Schmidt, F. Fazekas, A. Gouw et al., Brain atrophy accelerates cognitive decline in cerebral small vessel disease: The LADIS study, Neurology, vol.78, issue.22, pp.1785-92, 2012.
DOI : 10.1212/WNL.0b013e3182583070

E. Jouvent, A. Viswanathan, and H. Chabriat, Cerebral Atrophy in Cerebrovascular Disorders, Journal of Neuroimaging, vol.25, issue.2 suppl
DOI : 10.1111/j.1552-6569.2009.00370.x

M. Sullivan, E. Jouvent, P. Saemann, J. Mangin, A. Viswanathan et al., Measurement of brain atrophy in subcortical vascular disease: a comparison of different approaches and the impact of ischaemic lesions, Journal American Society of Neuroimaging NeuroImage Kloppenborg RP, vol.20, issue.87, pp.213-218, 2008.

A. Dale, B. Fischl, and M. Sereno, Cerebral small-vessel disease and progression of brain atrophy: the SMART-MR study Cortical surface-based analysis -I. Segmentation and surface reconstruction, Neurology Neuroimage, vol.79, issue.89, pp.2029-2065, 1999.

B. Fischl, M. Sereno, and A. Dale, Cortical Surface-Based Analysis, NeuroImage, vol.9, issue.2, pp.195-207, 1999.
DOI : 10.1006/nimg.1998.0396

J. Ashburner and K. Friston, Unified segmentation, 91. Smith SM, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

L. Huang, X. Wang, M. Baliki, L. Wang, A. Apkarian et al., Reproducibility of Structural, Resting-State BOLD and DTI Data between Identical Scanners, PLoS ONE, vol.51, issue.10, pp.47684-94, 2012.
DOI : 10.1371/journal.pone.0047684.t006

E. Gedamu, D. Collins, and D. Arnold, Automated quality control of brain MR images, Journal of Magnetic Resonance Imaging, vol.2, issue.Pt 1
DOI : 10.1002/jmri.21434

A. Patwardhan, S. Eliez, I. Warsofsky, G. Glover, C. White et al., Effects of Image Orientation on the Comparability of Pediatric Brain Volumes Using Three-Dimensional MR Data, Journal of Computer Assisted Tomography, vol.25, issue.3, pp.452-459, 2001.
DOI : 10.1097/00004728-200105000-00020

T. Duning, S. Kloska, O. Steinstrater, H. Kugel, W. Heindel et al., Dehydration confounds the assessment of brain atrophy, Neurology, vol.64, issue.3, pp.548-50, 2005.
DOI : 10.1212/01.WNL.0000150542.16969.CC

. Sd, Blood pressure and sodium: association with MRI markers in cerebral small vessel disease

J. Wardlaw, V. Hernandez, M. Munoz-maniega, and S. , What are White Matter Hyperintensities Made of? Relevance to Vascular Cognitive Impairment, Journal of the American Heart Association, vol.4, issue.6, p.1140, 2015.
DOI : 10.1161/JAHA.114.001140

G. Krueger, C. Granziera, C. Jack, J. Gunter, A. Littmann et al., Effects of MRI scan acceleration on brain volume measurement consistency, Journal of Magnetic Resonance Imaging, vol.44, issue.5, pp.1234-1240, 2012.
DOI : 10.1002/jmri.23694

S. Smith, N. De-stefano, M. Jenkinson, P. Matthews, S. Smith et al., Normalized accurate measurement of longitudinal brain change Accurate, robust, and automated longitudinal and cross-sectional brain change analysis, CADASIL: a serial MRI study in pure subcortical ischemic vascular disease, pp.1517-1539, 2001.

P. Freeborough and N. Fox, The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI, IEEE Transactions on Medical Imaging, vol.16, issue.5, pp.623-629, 1997.
DOI : 10.1109/42.640753

H. Takao, N. Hayashi, and K. Ohtomo, Effect of scanner in longitudinal studies of brain volume changes, Journal of Magnetic Resonance Imaging, vol.47, issue.Pt 1, pp.438-444, 2011.
DOI : 10.1002/jmri.22636

D. Dickie, D. Job, D. Gonzalez, S. Shenkin, W. Jmbrien et al., Use of brain MRI atlases to determine boundaries of age-related pathology: the importance of statistical method Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia, PloS one Neurology, vol.10, issue.5610, pp.127939-109, 2001.

S. Fsl, whole brain atrophy algorithm is no more reproducible at 3T than 1.5 T for Alzheimer's disease, Psychiatry research, vol.224, issue.1, pp.14-21, 2014.

G. Preboske, J. Gunter, C. Ward, and C. Jack, Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI, NeuroImage, vol.30, issue.4, pp.1196-1202, 2006.
DOI : 10.1016/j.neuroimage.2005.10.049

Z. Caramanos, V. Fonov, S. Francis, S. Narayanan, G. Pike et al., Gradient distortions in MRI: Characterizing and correcting for their effects on SIENA-generated measures of brain volume change, NeuroImage, vol.49, issue.2, pp.1601-1611, 2010.
DOI : 10.1016/j.neuroimage.2009.08.008

J. Jovicich, S. Czanner, D. Greve, E. Haley, A. Van-der-kouwe et al., Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data, NeuroImage, vol.30, issue.2, pp.436-443, 2006.
DOI : 10.1016/j.neuroimage.2005.09.046

T. Tadic, D. Jaffray, and T. Stanescu, Harmonic analysis for the characterization and correction of geometric distortion in MRI, Medical Physics, vol.59, issue.11, p.112303, 2014.
DOI : 10.1118/1.597854

N. Maikusa, F. Yamashita, K. Tanaka, O. Abe, A. Kawaguchi et al., Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom, Medical Physics, vol.47, issue.4, p.62303, 2013.
DOI : 10.1016/j.neuroimage.2009.05.045

M. Davids, F. Zollner, M. Ruttorf, F. Nees, H. Flor et al., Fully-automated quality assurance in multi-center studies using MRI phantom measurements, Magnetic Resonance Imaging, vol.32, issue.6, pp.771-80, 2014.
DOI : 10.1016/j.mri.2014.01.017

H. Takao, O. Abe, N. Hayashi, H. Kabasawa, K. Ohtomo et al., Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA), Journal of Magnetic Resonance Imaging, vol.15, issue.2, pp.489-492, 2010.
DOI : 10.1002/jmri.22237

M. Bernstein, C. Jack, J. Gunter, J. Ward, C. Britson et al., Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: procedure development using CaliBrain structural MRI data, BMC Med Imaging, vol.9, 2009.