K. Abbas, M. Hardy, F. Poulhès, H. Karoui, P. Tordo et al., Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps, Free Radical Biology and Medicine, vol.71, pp.281-90, 2014.
DOI : 10.1016/j.freeradbiomed.2014.03.019

URL : https://hal.archives-ouvertes.fr/hal-01414138

R. Ahmad, G. Caia, L. Potter, S. Petryakov, P. Kuppusamy et al., In vivo multisite oximetry using EPR???NMR coimaging, Journal of Magnetic Resonance, vol.207, issue.1, pp.69-77, 2010.
DOI : 10.1016/j.jmr.2010.08.011

M. Alecci, M. Ferrari, V. Quaresima, A. Sotgiu, and C. Ursini, Simultaneous 280 MHz EPR imaging of rat organs during nitroxide free radical clearance, Biophysical Journal, vol.67, issue.3, pp.1274-1283, 1994.
DOI : 10.1016/S0006-3495(94)80599-5

G. Bacic, M. Nilges, R. Magin, T. Walczak, and H. Swartz, In vivo localized ESR spectroscopy reflecting metabolism, Magnetic Resonance in Medicine, vol.72, issue.2, pp.266-272, 1989.
DOI : 10.1002/mrm.1910100211

J. Ballinger, Imaging hypoxia in tumors, Seminars in Nuclear Medicine, vol.31, issue.4, pp.321-911710774, 2001.
DOI : 10.1053/snuc.2001.26191

J. Beckman, T. Beckman, J. Chen, P. Marshall, and B. Freeman, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide., Proceedings of the National Academy of Sciences, vol.87, issue.4, pp.1620-1624, 1990.
DOI : 10.1073/pnas.87.4.1620

J. Berliner and H. Fujii, Magnetic resonance imaging of biological specimens by electron paramagnetic resonance of nitroxide spin labels, Science, vol.227, issue.4686, pp.517-519, 1985.
DOI : 10.1126/science.2981437

L. Berliner, V. V. Khramtsov, T. Clanton, and H. Fujii, NMR and MRI spin trapping: using NMR to learn about free radical reactions, Curr Top Biophys, vol.26, issue.21, p.27, 2002.

L. Berliner, H. Fujii, X. Wan, and S. Lukiewicz, Feasibility study of imaging a living murine tumor by electron paramagnetic resonance, Magnetic Resonance in Medicine, vol.147, issue.4, pp.380-43035320, 1987.
DOI : 10.1002/mrm.1910040410

N. Bézière, C. Decroos, K. Mkhitaryan, E. Kish, F. Richard et al., First combined in vivo X-ray tomography and high-resolution molecular electron paramagnetic resonance (EPR) imaging of the mouse knee joint taking into account the disappearance kinetics of the EPR probe, Mol Imaging, vol.11, pp.220-822554486, 2012.

O. Björnberg, H. Østergaard, and J. Winther, Mechanistic Insight Provided by Glutaredoxin within a Fusion to Redox-Sensitive Yellow Fluorescent Protein, Biochemistry, vol.45, issue.7
DOI : 10.1021/bi0522495

F. Blankenberg, S. Kinsman, B. Cohen, M. Goris, K. Spicer et al., Brain uptake of Tc99m-HMPAO correlates with clinical response to the novel redox modulating agent EPI-743 in patients with mitochondrial disease, Molecular Genetics and Metabolism, vol.107, issue.4, pp.690-699, 2012.
DOI : 10.1016/j.ymgme.2012.09.023

R. Brasch, Work in progress: methods of contrast enhancement for NMR imaging and potential applications. A subject review., Radiology, vol.147, issue.3, pp.781-789, 1983.
DOI : 10.1148/radiology.147.3.6342034

G. Caia, O. V. Efimova, M. Velayutham, M. El-mahdy, T. Abdelghany et al., Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging, Journal of Magnetic Resonance, vol.216, pp.21-28, 2012.
DOI : 10.1016/j.jmr.2011.10.017

J. Chan, S. Dodani, and C. Chang, Reaction-based small-molecule fluorescent probes for chemoselective bioimaging, Nature Chemistry, vol.1, issue.12, pp.973-84, 2012.
DOI : 10.1038/nchem.1500

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie et al., Depth-resolved spectral imaging of rabbit oesophageal tissue based on two-photon excited fluorescence and second-harmonic generation, New Journal of Physics, vol.9, issue.7, pp.212-212, 2007.
DOI : 10.1088/1367-2630/9/7/212

R. Chen, L. Zhang, J. Gao, W. Wu, Y. Hu et al., Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy, Journal of Biomedicine and Biotechnology, vol.4, issue.1, p.679492, 2011.
DOI : 10.1016/S0168-3659(99)00248-5

C. Chung, D. Srikun, C. Lim, C. Chang, and B. Cho, A two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue, Chemical Communications, vol.407, issue.34, pp.9618-9620, 2011.
DOI : 10.1039/c1cc13583j

R. Cutler and H. Rodriguez, Advances in Basic Science, Diagnostics and Intervention, Critical Reviews of Oxidative Stress and Aging, vol.2, 2016.

D. Autréaux, B. Toledano, and M. , ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nature Reviews Molecular Cell Biology, vol.21, issue.10, pp.813-837, 2007.
DOI : 10.1038/nrm2256

M. Dasari, D. Lee, V. Erigala, and N. Murthy, Chemiluminescent PEG-PCL micelles for imaging hydrogen peroxide. [Online], J Biomed Mater Res A, vol.89, pp.561-567, 2009.

R. Davis, A. Sowers, W. Degraff, M. Bernardo, A. Thetford et al., A novel nitroxide is an effective brain redox imaging contrast agent and in vivo radioprotector, Free Radical Biology and Medicine, vol.51, issue.3, pp.780-90, 2011.
DOI : 10.1016/j.freeradbiomed.2011.05.019

B. Dickinson, V. Lin, and C. Chang, Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells, Nature Protocols, vol.8, issue.6, pp.1249-59, 2013.
DOI : 10.1021/ic049293d

S. Dikalov, I. Kirilyuk, M. Voinov, and I. Grigor-'ev, EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines, Free Radical Research, vol.73, issue.4, pp.417-447
DOI : 10.1073/pnas.0831079100

J. Dobrucki, F. Demsar, T. Walczak, R. Woods, G. Bacic et al., Electron spin resonance microscopy of an in vitro tumour model, British Journal of Cancer, vol.61, issue.2, pp.221-225, 1990.
DOI : 10.1038/bjc.1990.41

X. Dong, C. Heo, S. Chen, H. Kim, and Z. Liu, Quinoline-Based Two-Photon Fluorescent Probe for Nitric Oxide in Live Cells and Tissues, Analytical Chemistry, vol.86, issue.1, pp.308-319, 2014.
DOI : 10.1021/ac403226h

M. Elas, K. Ichikawa, and H. Halpern, Oxidative Stress Imaging in Live Animals with Techniques Based on Electron Paramagnetic Resonance, Radiation Research, vol.177, issue.4, 2015.
DOI : 10.1667/RR2668.1

M. Ferrari, S. Colacicchi, G. Gualtieri, M. Santini, and A. Sotgiu, Whole mouse nitroxide free radical pharmacokinetics by low frequency electron paramagnetic resonance, Biochemical and Biophysical Research Communications, vol.166, issue.1, pp.168-173, 1990.
DOI : 10.1016/0006-291X(90)91926-J

T. Finkel, Oxidant signals and oxidative stress, Current Opinion in Cell Biology, vol.15, issue.2, pp.247-5412648682, 2003.
DOI : 10.1016/S0955-0674(03)00002-4

A. Fritzberg, D. Lyster, and D. Dolphin, 99mTc-glutathione: Role of reducing agent on renal retention, International Journal of Nuclear Medicine and Biology, vol.5, issue.2-3, pp.87-92, 1978.
DOI : 10.1016/0047-0740(78)90032-3

H. Fujii, M. Aoki, T. Haishi, K. Itoh, and M. Sakata, Development of an ESR/MR Dual-imaging System as a Tool to Detect Bioradicals, Magnetic Resonance in Medical Sciences, vol.5, issue.1, pp.17-2316785723, 2006.
DOI : 10.2463/mrms.5.17

H. Fujii, K. Itoh, R. Pandian, M. Sakata, P. Kuppusamy et al., Measuring Brain Tissue Oxygenation under Oxidative Stress by ESR/MR Dual Imaging System, Magnetic Resonance in Medical Sciences, vol.6, issue.2
DOI : 10.2463/mrms.6.83

H. Fujii, H. Sato-akaba, K. Kawanishi, and H. Hirata, Mapping of redox status in a brain-disease mouse model by three-dimensional EPR imaging, Magnetic Resonance in Medicine, vol.62, issue.1, pp.295-303, 2011.
DOI : 10.1002/mrm.22598

H. Fujii, X. Wan, J. Zhong, L. Berliner, and K. Yoshikawa, In vivo imaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping, Magnetic Resonance in Medicine, vol.42, issue.2, pp.235-244, 1999.
DOI : 10.1002/(SICI)1522-2594(199908)42:2<235::AID-MRM4>3.0.CO;2-Y

H. Fujii, H. Sato-akaba, M. Emoto, K. Itoh, Y. Ishihara et al., Noninvasive mapping of the redox status in septic mouse by in vivo electron paramagnetic resonance imaging, Magnetic Resonance Imaging, vol.31, issue.1, pp.130-138, 2013.
DOI : 10.1016/j.mri.2012.06.021

B. Gallez, G. Bacic, F. Goda, J. Jiang, J. O?hara et al., Use of nitroxides for assessing perfusion, oxygenation, and viability of tissues:In vivo EPR and MRI studies, Magnetic Resonance in Medicine, vol.31, issue.1, pp.97-106, 1996.
DOI : 10.1002/mrm.1910350113

M. Giorgio, M. Trinei, E. Migliaccio, and P. Pelicci, Hydrogen peroxide: a metabolic

D. Giuseppe, S. Placidi, G. Sotgiu, and A. , New experimental apparatus for multimodal resonance imaging: initial EPRI and NMRI experimental results, Physics in Medicine and Biology, vol.46, issue.4, pp.1003-1611324947, 2001.
DOI : 10.1088/0031-9155/46/4/307

F. Goda, G. Bacic, O. Hara, J. Gallez, B. Swartz et al., The relationship between partial pressure of oxygen and perfusion in two murine tumors after X-ray irradiation: a combined gadopentetate dimeglumine dynamic magnetic resonance imaging and in vivo electron paramagnetic resonance oximetry study, Cancer Res, vol.568764132, pp.3344-3353, 1920.

H. Guo, H. Aleyasin, B. Dickinson, R. Haskew-layton, and R. Ratan, Recent advances in hydrogen peroxide imaging for biological applications, Cell & Bioscience, vol.4, issue.1, p.64, 2014.
DOI : 10.1021/ar200126t

J. Guzman, J. Sanchez-padilla, D. Wokosin, J. Kondapalli, E. Ilijic et al., Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1, Nature, vol.4, issue.7324, pp.696-700, 2010.
DOI : 10.1038/nature09536

H. Halpern, C. Yu, E. Barth, M. Peric, and G. Rosen, In situ detection, by spin trapping, of hydroxyl radical markers produced from ionizing radiation in the tumor of a living mouse., Proceedings of the National Academy of Sciences, vol.92, issue.3, pp.796-800, 1995.
DOI : 10.1073/pnas.92.3.796

G. He, Y. Deng, H. Li, P. Kuppusamy, and J. Zweier, EPR/NMR co-imaging for anatomic registration of free-radical images, Magnetic Resonance in Medicine, vol.46, issue.3, pp.571-811870845, 2002.
DOI : 10.1002/mrm.10077

G. He, V. Kutala, P. Kuppusamy, and J. Zweier, In vivo measurement and mapping of skin redox stress induced by ultraviolet light exposure, Free Radical Biology and Medicine, vol.36, issue.5, pp.665-72, 2004.
DOI : 10.1016/j.freeradbiomed.2003.11.024

G. He, A. Samouilov, P. Kuppusamy, and J. Zweier, In Vivo EPR Imaging of the Distribution and Metabolism of Nitroxide Radicals in Human Skin, Journal of Magnetic Resonance, vol.148, issue.1, pp.155-64, 2001.
DOI : 10.1006/jmre.2000.2226

T. Herrling, J. Fuchs, J. Rehberg, and N. Groth, UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides, Free Radical Biology and Medicine, vol.35, issue.1, pp.59-6712826256, 2003.
DOI : 10.1016/S0891-5849(03)00241-7

A. Hirayama, S. Nagase, A. Ueda, T. Oteki, K. Takada et al., In vivo imaging of oxidative stress in ischemia-reperfusion renal injury using electron paramagnetic resonance, AJP: Renal Physiology, vol.288, issue.3, pp.597-603, 2005.
DOI : 10.1152/ajprenal.00020.2004

A. Hirayama, A. Ueda, T. Oteki, S. Nagase, K. Aoyagi et al., In Vivo Imaging of Renal Redox Status during Azelnidipine Treatment, Hypertension Research, vol.31, issue.8, pp.1643-50, 2008.
DOI : 10.1291/hypres.31.1643

A. Hirayama, K. Yoh, S. Nagase, A. Ueda, K. Itoh et al., EPR imaging of reducing activity in Nrf2 transcriptional factor-deficient mice, Free Radical Biology and Medicine, vol.34, issue.10, pp.1236-4212726911, 2003.
DOI : 10.1016/S0891-5849(03)00073-X

H. Hong, J. Sun, and W. Cai, Multimodality imaging of nitric oxide and nitric oxide synthases, Free Radical Biology and Medicine, vol.47, issue.6, pp.684-98, 2009.
DOI : 10.1016/j.freeradbiomed.2009.06.011

F. Hyodo, K. Chuang, A. Goloshevsky, A. Sulima, G. Griffiths et al., Brain Redox Imaging Using Blood???Brain Barrier-Permeable Nitroxide MRI Contrast Agent, Journal of Cerebral Blood Flow & Metabolism, vol.51, issue.6, pp.1165-74, 2008.
DOI : 10.1016/j.neuroimage.2004.09.043

F. Hyodo, S. Ito, K. Yasukawa, R. Kobayashi, and H. Utsumi, Simultaneous and Spectroscopic Redox Molecular Imaging of Multiple Free Radical Intermediates Using Dynamic Nuclear Polarization-Magnetic Resonance Imaging, Analytical Chemistry, vol.86, issue.15, pp.7234-7242, 2014.
DOI : 10.1021/ac502150x

F. Hyodo, K. Matsumoto, A. Matsumoto, J. Mitchell, and M. Krishna, Probing the Intracellular Redox Status of Tumors with Magnetic Resonance Imaging and Redox-Sensitive Contrast Agents, Cancer Research, vol.66, issue.20, pp.9921-9929, 2006.
DOI : 10.1158/0008-5472.CAN-06-0879

F. Hyodo, S. Matsumoto, N. Devasahayam, C. Dharmaraj, S. Subramanian et al., Pulsed EPR imaging of nitroxides in mice, Journal of Magnetic Resonance, vol.197, issue.2, pp.181-186, 2009.
DOI : 10.1016/j.jmr.2008.12.018

F. Hyodo, R. Murugesan, K. Matsumoto, E. Hyodo, S. Subramanian et al., Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI, Journal of Magnetic Resonance, vol.190, issue.1, pp.105-117, 2008.
DOI : 10.1016/j.jmr.2007.10.013

F. Hyodo, K. Yasukawa, K. Yamada, and H. Utsumi, Spatially resolved time-course studies of free radical reactions with an EPRI/MRI fusion technique, Magnetic Resonance in Medicine, vol.26, issue.4, pp.938-981, 2006.
DOI : 10.1002/mrm.21019

G. Ilangovan, H. Li, J. Zweier, M. Krishna, J. Mitchell et al., In vivo measurement of regional oxygenation and imaging of redox status in RIF-1 murine tumor: Effect of carbogen-breathing, Magnetic Resonance in Medicine, vol.57, issue.4, pp.723-730, 2002.
DOI : 10.1002/mrm.10254

I. Imada, E. Sato, M. Miyamoto, Y. Ichimori, Y. Minamiyama et al., Analysis of Reactive Oxygen Species Generated by Neutrophils Using a Chemiluminescence Probe L-012, Analytical Biochemistry, vol.271, issue.1, pp.53-61, 1999.
DOI : 10.1006/abio.1999.4107

S. Ishida, S. Matsumoto, H. Yokoyama, N. Mori, H. Kumashiro et al., An ESR-CT imaging of the head of a living rat receiving an administration of a nitroxide radical, Magnetic Resonance Imaging, vol.10, issue.1, pp.109-141312195, 1992.
DOI : 10.1016/0730-725X(92)90379-E

K. Jung, J. Lee, T. Quach, C. Paik, J. Oh et al., Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species-Mediated Hypoxia-Inducible Factor-1?? Activation, Journal of Nuclear Medicine, vol.54, issue.12, pp.2161-2168, 2013.
DOI : 10.2967/jnumed.112.115436

B. Kalyanaraman, Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms, Redox Biology, vol.1, issue.1, pp.244-257, 2013.
DOI : 10.1016/j.redox.2013.01.014

M. Kelm, Nitric oxide metabolism and breakdown, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1411, issue.2-3, pp.273-289, 1999.
DOI : 10.1016/S0005-2728(99)00020-1

N. Khan and H. Swartz, Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy, Mol Cell Biochem, vol.234235, pp.341-5712162453, 2015.
DOI : 10.1007/978-1-4615-1087-1_39

N. Khan, B. Williams, and H. Swartz, Clinical applications of in vivo EPR: Rationale and initial results, Applied Magnetic Resonance, vol.62, issue.2, pp.185-199, 2006.
DOI : 10.1007/BF03166718

A. Kielland, T. Blom, K. Nandakumar, R. Holmdahl, R. Blomhoff et al., In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012, Free Radical Biology and Medicine, vol.47, issue.6, pp.760-766, 2009.
DOI : 10.1016/j.freeradbiomed.2009.06.013

D. Kim, W. Kim, M. Kim, C. Kim, C. Oh et al., Synthesis and evaluation of Tc-99m DTPA???glutathione as a non-invasive tumor imaging agent in a mouse colon cancer model, Annals of Nuclear Medicine, vol.14, issue.5, pp.447-54, 2014.
DOI : 10.1007/s12149-014-0835-8

P. Kim, M. Puoris-'haag, D. Côté, C. Lin, and S. Yun, In vivo confocal and multiphoton microendoscopy, Journal of Biomedical Optics, vol.13, issue.1, p.10501
DOI : 10.1117/1.2839043

H. Kobayashi, T. Watanabe, S. Oowada, A. Hirayama, S. Nagase et al., Effect of CV159???Ca2+/Calmodulin Blockade on Redox Status Hepatic Ischemia???Reperfusion Injury in Mice Evaluated by a Newly Developed In Vivo EPR Imaging Technique, Journal of Surgical Research, vol.147, issue.1, pp.41-50, 2008.
DOI : 10.1016/j.jss.2007.06.024

Y. Koide, M. Kawaguchi, Y. Urano, K. Hanaoka, T. Komatsu et al., A reversible near-infrared fluorescence probe for reactive oxygen species based on Te???rhodamine, Chemical Communications, vol.19, issue.25, pp.3091-3094, 2012.
DOI : 10.1039/c2cc18011a

A. V. Kozlov, L. Szalay, F. Umar, K. Kropik, K. Staniek et al., Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old rats, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1740, issue.3, pp.382-391, 2005.
DOI : 10.1016/j.bbadis.2004.11.004

M. Krishna, S. English, K. Yamada, J. Yoo, R. Murugesan et al., Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy and tissue oxygen concentration, Proceedings of the National Academy of Sciences, vol.99, issue.4, pp.2216-2237, 2002.
DOI : 10.1073/pnas.042671399

P. Kuppusamy, M. Afeworki, R. Shankar, D. Coffin, M. Krishna et al., In Vivo Electron Paramagnetic Resonance Imaging of Tumor Heterogeneity and Oxygenation in a Murine Model [Online], Cancer Res, vol.58, pp.1562-1568, 1998.

P. Kuppusamy, H. Li, G. Ilangovan, A. Cardounel, J. Zweier et al., Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels, Cancer Res, vol.62, pp.307-1211782393, 2002.

P. Kuppusamy, R. Shankar, V. Roubaud, and J. Zweier, Whole body detection and imaging of nitric oxide generation in mice following cardiopulmonary arrest: Detection of intrinsic nitrosoheme complexes, Magnetic Resonance in Medicine, vol.258, issue.4, pp.700-711283999, 2001.
DOI : 10.1002/mrm.1093

N. Lassen, A. Andersen, L. Friberg, and O. Paulson, -HM-PAO in the Human Brain after Intracarotid Bolus Injection: A Kinetic Analysis, Journal of Cerebral Blood Flow & Metabolism, vol.8, issue.1_suppl, pp.13-22, 1988.
DOI : 10.1038/jcbfm.1988.28

URL : https://hal.archives-ouvertes.fr/in2p3-00460589

D. Lee, S. Khaja, J. Velasquez-castano, M. Dasari, C. Sun et al., In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles, Nature Materials, vol.7, issue.10, pp.765-774, 2007.
DOI : 10.1038/nmat1983

I. Lee, O. Hwang, D. Yoo, G. Khang, and D. Lee, Detection of Hydrogen Peroxide in vitro and in vivo Using Peroxalate Chemiluminescent Micelles, Bulletin of the Korean Chemical Society, vol.32, issue.7, pp.2187-2192, 2011.
DOI : 10.5012/bkcs.2011.32.7.2187

J. Lee, C. Lim, Y. Tian, J. Han, and B. Cho, A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues, Journal of the American Chemical Society, vol.132, issue.4, pp.1216-1223, 2010.
DOI : 10.1021/ja9090676

J. Lippincott-schwartz, N. Altan-bonnet, and G. Patterson, Photobleaching and photoactivation: following protein dynamics in living cells, Nat Cell Biol, pp.7-14, 2003.

K. Liu, G. Bacic, J. Hoopes, P. Jiang, J. Du et al., Assessment of cerebral pO2 by EPR oximetry in rodents: effects of anesthesia, ischemia, and breathing gas, Brain Research, vol.685, issue.1-2, pp.91-98, 1995.
DOI : 10.1016/0006-8993(95)00413-K

S. Liu, G. Timmins, H. Shi, C. Gasparovic, and K. Liu, Application ofin vivo EPR in brain research: monitoring tissue oxygenation, blood flow, and oxidative stress, NMR in Biomedicine, vol.17, issue.5, pp.327-361, 2004.
DOI : 10.1002/nbm.899

W. Liu, M. Ma, K. Bratlie, T. Dang, R. Langer et al., Real-time in vivo detection of biomaterial-induced reactive oxygen species, Biomaterials, vol.32, issue.7, pp.1796-801, 2011.
DOI : 10.1016/j.biomaterials.2010.11.029

Y. Liu, B. Davidson, Q. Yue, T. Belcik, A. Xie et al., Molecular Imaging of Inflammation and Platelet Adhesion in Advanced Atherosclerosis Effects of Antioxidant Therapy With NADPH Oxidase Inhibition, Circulation: Cardiovascular Imaging, vol.6, issue.1, pp.74-82, 2013.
DOI : 10.1161/CIRCIMAGING.112.975193

Y. Liu, Y. Song, D. Pascali, F. Liu, X. Villamena et al., Tetrathiatriarylmethyl radical with a single aromatic hydrogen as a highly sensitive and specific superoxide probe, Free Radical Biology and Medicine, vol.53, issue.11, pp.2081-91, 2012.
DOI : 10.1016/j.freeradbiomed.2012.09.011

D. Lurie, D. Bussell, L. Bell, and J. Mallard, Proton-electron double magnetic resonance imaging of free radical solutions, Journal of Magnetic Resonance (1969), vol.76, issue.2, pp.366-370, 1988.
DOI : 10.1016/0022-2364(88)90123-0

D. Lurie, M. Foster, D. Yeung, and J. Hutchison, Design, construction and use of a large-sample field-cycled PEDRI imager, Physics in Medicine and Biology, vol.43, issue.7, pp.1877-869703050, 1998.
DOI : 10.1088/0031-9155/43/7/008

G. Maghzal, K. Cergol, S. Shengule, C. Suarna, D. Newington et al., Assessment of Myeloperoxidase Activity by the Conversion of Hydroethidine to 2-Chloroethidium, Journal of Biological Chemistry, vol.289, issue.9, pp.5580-95, 2014.
DOI : 10.1074/jbc.M113.539486

T. Maly, G. Debelouchina, V. Bajaj, K. Hu, C. Joo et al., Dynamic nuclear polarization at high magnetic fields, The Journal of Chemical Physics, vol.128, issue.5, p.52211, 2008.
DOI : 10.1063/1.2833582

K. Matsumoto, S. Subramanian, R. Murugesan, J. Mitchell, and M. Krishna, EPRI, OMRI, and MRI, Antioxidants & Redox Signaling, vol.9, issue.8, pp.1125-1166, 2007.
DOI : 10.1089/ars.2007.1638

G. Maulucci, V. Labate, M. Mele, E. Panieri, G. Arcovito et al., High-Resolution Imaging of Redox Signaling in Live Cells Through an Oxidation-Sensitive Yellow Fluorescent Protein, Science Signaling, vol.1, issue.43, p.3, 2008.
DOI : 10.1126/scisignal.143pl3

G. Maulucci, V. Labate, M. Mele, E. Panieri, G. Arcovito et al., High-Resolution Imaging of Redox Signaling in Live Cells Through an Oxidation-Sensitive Yellow Fluorescent Protein, Science Signaling, vol.1, issue.43, p.3, 2008.
DOI : 10.1126/scisignal.143pl3

G. Maulucci, G. Pani, V. Labate, M. Mele, E. Panieri et al., Investigation of the spatial distribution of glutathione redox-balance in live cells by using Fluorescence Ratio Imaging Microscopy, Biosensors and Bioelectronics, vol.25, issue.4, pp.682-689, 2009.
DOI : 10.1016/j.bios.2009.07.038

G. Maulucci, G. Pani, M. Papi, and T. Galeotti, Can redox-sensitive fluorescent probes measure intracellular redox potentials ?, Nuovo Cim, vol.125, pp.645-655, 2010.

G. Maulucci, D. Troiani, S. Eramo, F. Paciello, M. Podda et al., Time evolution of noise induced oxidation in outer hair cells: Role of NAD(P)H and plasma membrane fluidity, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1840, issue.7, pp.2192-2202, 2014.
DOI : 10.1016/j.bbagen.2014.04.005

&. Antioxidants and . Redox, Signaling Imaging ROS-induced modifications in living systems

A. Maiorana, V. Palmieri, D. Spirito, M. Fetoni, and A. , Time evolution of noise induced oxidation in outer hair cells: Role of NAD(P)H and plasma membrane fluidity

T. Mikuni, G. He, S. Petryakov, M. Fallouh, Y. Deng et al., In vivo Detection of Gastric Cancer in Rats by Electron Paramagnetic Resonance Imaging, Cancer Research, vol.64, issue.18, pp.6495-502, 2004.
DOI : 10.1158/0008-5472.CAN-04-0319

L. Mosconi, A. Pupi, D. Leon, and M. , Brain Glucose Hypometabolism and Oxidative Stress in Preclinical Alzheimer's Disease, Annals of the New York Academy of Sciences, vol.25, issue.6, pp.180-95, 2008.
DOI : 10.1196/annals.1427.007

T. Nagano and T. Yoshimura, Bioimaging of Nitric Oxide, Chemical Reviews, vol.102, issue.4, pp.1235-7011942795, 2002.
DOI : 10.1021/cr010152s

R. Neirinckx, J. Burke, R. Harrison, A. Forster, A. Andersen et al., The Retention Mechanism of Technetium-99m-HM-PAO: Intracellular Reaction with Glutathione, Journal of Cerebral Blood Flow & Metabolism, vol.5, issue.1_suppl, pp.4-12, 1988.
DOI : 10.1016/0003-9861(59)90090-6

A. Nunn, K. Linder, and H. Strauss, Nitroimidazoles and imaging hypoxia, European Journal of Nuclear Medicine, vol.41, issue.27, pp.265-80778940025, 1995.
DOI : 10.1007/BF01081524

O. Donoghue, J. Guillem, J. Schöder, H. Lee, N. Divgi et al., Pilot study of PET imaging of 124I-iodoazomycin galactopyranoside (IAZGP), a putative hypoxia imaging agent, in patients with colorectal cancer and head and neck cancer, EJNMMI Research, vol.3, issue.1, p.42, 2013.
DOI : 10.2967/jnumed.110.086165

E. Olson, J. Orozco, Z. Wu, C. Malone, Y. B. Gao et al., Toward in??vivo detection of hydrogen peroxide with ultrasound molecular imaging, Biomaterials, vol.34, issue.35, pp.8918-8942, 2013.
DOI : 10.1016/j.biomaterials.2013.06.055

D. Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka et al., Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes, Journal of the American Chemical Society, vol.132, issue.8, pp.2795-801, 2010.
DOI : 10.1021/ja910090v

P. Pacher, J. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease, Physiological Reviews, vol.87, issue.1, pp.315-424, 2007.
DOI : 10.1152/physrev.00029.2006

J. Paletta, M. Pink, B. Foley, S. Rajca, and A. Rajca, Synthesis and Reduction Kinetics of Sterically Shielded Pyrrolidine Nitroxides, Organic Letters, vol.14, issue.20, pp.5322-5327, 2012.
DOI : 10.1021/ol302506f

J. Perng, S. Lee, K. Kundu, C. Caskey, S. Knight et al., Ultrasound Imaging of Oxidative Stress In Vivo with Chemically-Generated Gas Microbubbles, Annals of Biomedical Engineering, vol.254, issue.5033, pp.2059-68, 2012.
DOI : 10.1007/s10439-012-0573-9

S. Perry, R. Burke, and E. Brown, Two-Photon and Second Harmonic Microscopy in Clinical and Translational Cancer Research, Annals of Biomedical Engineering, vol.99, issue.9, pp.277-91, 2012.
DOI : 10.1007/s10439-012-0512-9

D. Piwnica-worms, M. Chiu, M. Budding, J. Kronauge, R. Kramer et al., Functional Imaging of Multidrug-resistant P-Glycoprotein with an Organotechnetium Complex [Online], Cancer Res, vol.53, pp.977-984, 1993.

V. Quaresima, M. Alecci, M. Ferrari, and A. Sotgiu, Whole rat electron paramagnetic resonance imaging of a nitroxide free radical by a radio frequency (280 MHz) spectrometer, Biochemical and Biophysical Research Communications, vol.183, issue.2, pp.829-351312842, 1992.
DOI : 10.1016/0006-291X(92)90558-3

T. Rassaf, M. Preik, P. Kleinbongard, T. Lauer, C. Heiss et al., Evidence for in vivo transport of bioactive nitric oxide in human plasma, Journal of Clinical Investigation, vol.109, issue.9, pp.1241-1249, 2002.
DOI : 10.1172/JCI0214995

G. Redler, E. Barth, K. Bauer, J. Kao, G. Rosen et al., -3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl, Magnetic Resonance in Medicine, vol.55, issue.Suppl 1, pp.1650-1656, 2014.
DOI : 10.1002/mrm.24813

URL : https://hal.archives-ouvertes.fr/hal-00691329

D. Rivera, C. Brown, D. Ouzounov, I. Pavlova, D. Kobat et al., Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue, Proceedings of the National Academy of Sciences, vol.108, issue.43, pp.17598-603, 2011.
DOI : 10.1073/pnas.1114746108

M. Ryvolova, J. Chomoucka, J. Drbohlavova, P. Kopel, P. Babula et al., Modern Micro and Nanoparticle-Based Imaging Techniques, Sensors, vol.12, issue.12, pp.14792-820, 2012.
DOI : 10.3390/s121114792

A. Samouilov, G. Caia, E. Kesselring, S. Petryakov, T. Wasowicz et al., Development of a hybrid EPR/NMR coimaging system, Magnetic Resonance in Medicine, vol.48, issue.1, pp.156-166, 2007.
DOI : 10.1002/mrm.21205

H. Sano, K. Matsumoto, and H. Utsumi, Synthesis and imaging of blood-brain-barrier permeable nitroxyl-probes for free radical reactions in brain of living mice, IUBMB Life, vol.42, issue.3
DOI : 10.1080/15216549700203051

H. Sano, M. Naruse, K. Matsumoto, T. Oi, and H. Utsumi, A new nitroxyl-probe with high retention in the brain and its application for brain imaging, Free Radical Biology and Medicine, vol.28, issue.6, pp.959-6910802228, 2000.
DOI : 10.1016/S0891-5849(00)00184-2

S. Santra, J. Xu, K. Wang, and W. Tan, Luminescent Nanoparticle Probes for Bioimaging, Journal of Nanoscience and Nanotechnology, vol.4, issue.6, pp.590-915518392, 2004.
DOI : 10.1166/jnn.2004.017

T. Sasaki, N. Matuoka, A. Kubodera, S. Ishii, G. Goto et al., Synthesis of [11C] coenzyme Q-related compounds for in vivo estimation of mitochondrial electron transduction and redox state in brain, Nuclear Medicine and Biology, vol.26, issue.2, pp.183-710100217, 1999.
DOI : 10.1016/S0969-8051(98)00096-1

T. Sasaki, M. Senda, S. Kim, S. Kojima, and A. Kubodera, Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain, Nuclear Medicine and Biology, vol.28, issue.1, pp.25-3111182561, 2001.
DOI : 10.1016/S0969-8051(00)00180-3

M. Sato, N. Hida, and Y. Umezawa, Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells, Proceedings of the National Academy of Sciences, vol.102, issue.41, pp.14515-14535, 2005.
DOI : 10.1073/pnas.0505136102

M. Schwarzländer, M. Fricker, C. Müller, L. Marty, T. Brach et al., Confocal imaging of glutathione redox potential in living plant cells, Journal of Microscopy, vol.8, issue.2, pp.299-316, 2008.
DOI : 10.1111/j.1365-2818.2008.02030.x

C. Shuttleworth, Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation, Neurochemistry International, vol.56, issue.3, pp.379-86, 2010.
DOI : 10.1016/j.neuint.2009.12.015

M. Skala and N. Ramanujam, Multiphoton Redox Ratio Imaging for Metabolic Monitoring In Vivo, Methods Mol Biol, vol.594, pp.155-62, 2010.
DOI : 10.1007/978-1-60761-411-1_11

M. Skala, K. Riching, A. Gendron-fitzpatrick, J. Eickhoff, K. Eliceiri et al., In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proceedings of the National Academy of Sciences, vol.104, issue.49, pp.19494-19503, 2007.
DOI : 10.1073/pnas.0708425104

M. Skala, J. Squirrell, K. Vrotsos, J. Eickhoff, A. Gendron-fitzpatrick et al., Multiphoton Microscopy of Endogenous Fluorescence Differentiates Normal, Precancerous, and Cancerous Squamous Epithelial Tissues, Cancer Research, vol.65, issue.4, pp.1180-1186, 2005.
DOI : 10.1158/0008-5472.CAN-04-3031

T. Sonta, T. Inoguchi, S. Matsumoto, K. Yasukawa, M. Inuo et al., In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker, Biochemical and Biophysical Research Communications, vol.330, issue.2, pp.415-437, 2005.
DOI : 10.1016/j.bbrc.2005.02.174

C. Stringari, A. Cinquin, O. Cinquin, M. Digman, P. Donovan et al., Phasor approach to fl uorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue, 2011.

C. Stringari, R. Edwards, K. Pate, M. Waterman, P. Donovan et al., Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH, Scientific Reports, vol.3, p.568, 2012.
DOI : 10.1038/srep00568

H. Swartz, Use of nitroxides to measure redox metabolism in cells and tissues, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.83, issue.1, p.191, 1987.
DOI : 10.1039/f19878300191

K. Takeshita, K. Kawaguchi, K. Fujii-aikawa, M. Ueno, S. Okazaki et al., Heterogeneity of Regional Redox Status and Relation of the Redox Status to Oxygenation in a Tumor Model, Evaluated Using Electron Paramagnetic Resonance Imaging, Cancer Research, vol.70, issue.10, pp.4133-4173, 2010.
DOI : 10.1158/0008-5472.CAN-09-4369

K. Takeshita, H. Utsumi, and A. Hamada, ESR measurement of radical clearance in lung of whole mouse, Biochemical and Biophysical Research Communications, vol.177, issue.2, pp.874-801646612, 1991.
DOI : 10.1016/0006-291X(91)91871-9

G. Timmins, K. Liu, E. Bechara, Y. Kotake, and H. Swartz, Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4??????, Free Radical Biology and Medicine, vol.27, issue.3-4, pp.329-333, 1999.
DOI : 10.1016/S0891-5849(99)00049-0

H. Togashi, H. Shinzawa, T. Ogata, T. Matsuo, S. Ohno et al., Spatiotemporal Measurement of Free Radical Elimination in the Abdomen Using an In Vivo ESR-CT Imaging System, Free Radical Biology and Medicine, vol.25, issue.1, pp.1-89655515, 1998.
DOI : 10.1016/S0891-5849(97)00385-7

R. Towner, N. Smith, D. Saunders, F. Lupu, R. Silasi-mansat et al., In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis, Free Radical Biology and Medicine, vol.63, pp.351-60, 2013.
DOI : 10.1016/j.freeradbiomed.2013.05.026

R. Tsien and M. Poenie, Fluorescence ratio imaging: a new window into intracellular ionic signaling, Trends in Biochemical Sciences, vol.11, issue.11, pp.450-455, 1986.
DOI : 10.1016/0968-0004(86)90245-8

H. Tsukada, S. Nishiyama, D. Fukumoto, M. Kanazawa, and N. Harada, Novel PET Probes 18F-BCPP-EF and 18F-BCPP-BF for Mitochondrial Complex I: A PET Study in Comparison with 18F-BMS-747158-02 in Rat Brain, Journal of Nuclear Medicine, vol.55, issue.3, pp.473-80, 2014.
DOI : 10.2967/jnumed.113.125328

H. Tsukada, H. Ohba, M. Kanazawa, T. Kakiuchi, and N. Harada, Evaluation of 18F-BCPP-EF for mitochondrial complex 1 imaging in the brain of conscious monkeys using PET, European Journal of Nuclear Medicine and Molecular Imaging, vol.13, issue.S1, pp.755-63, 2014.
DOI : 10.1007/s00259-013-2628-z

H. Utsumi, H. Sano, M. Naruse, K. Matsumoto, K. Ichikawa et al., [41] Nitroxyl probes for brain research and their application to brain imaging, Methods Enzymol, vol.352, pp.494-50612125374, 2002.
DOI : 10.1016/S0076-6879(02)52043-7

H. Utsumi, K. Yamada, K. Ichikawa, K. Sakai, Y. Kinoshita et al., Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14N- and 15N-labeled nitroxyl radicals, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1463-1471, 2006.
DOI : 10.1073/pnas.0510670103

L. Uusitalo and N. Hempel, Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and Nanotube Applications, International Journal of Molecular Sciences, vol.13, issue.12, pp.10660-79, 2012.
DOI : 10.3390/ijms130910660

H. Wallrabe and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy, Current Opinion in Biotechnology, vol.16, issue.1, pp.19-27, 2005.
DOI : 10.1016/j.copbio.2004.12.002

K. Willig, S. Rizzoli, V. Westphal, R. Jahn, and S. Hell, STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis, Nature, vol.12, issue.7086, pp.935-944, 2006.
DOI : 10.1038/nature04592

A. Wolf, K. Nishimaki, N. Kamimura, and S. Ohta, Real-Time Monitoring of Oxidative Stress in Live Mouse Skin, Journal of Investigative Dermatology, vol.134, issue.6, pp.1701-1710, 2014.
DOI : 10.1038/jid.2013.428

K. Yamada, P. Kuppusamy, S. English, J. Yoo, A. Irie et al., Feasibility and assessment of non-invasive in vivo redox status using electron paramagnetic resonance imaging, Acta Radiologica, vol.42, issue.4, pp.433-440, 2002.
DOI : 10.1016/S0730-725X(99)00122-8

M. Yamato, T. Shiba, T. Naganuma, K. Ichikawa, H. Utsumi et al., Overhauser-enhanced magnetic resonance imaging characterization of mitochondria functional changes in the 6-hydroxydopamine rat model, Neurochemistry International, vol.59, issue.6, pp.804-815, 2011.
DOI : 10.1016/j.neuint.2011.08.010

M. Yamato, T. Shiba, K. Yamada, T. Watanabe, and H. Utsumi, Noninvasive Assessment of the Brain Redox Status after Transient Middle Cerebral Artery Occlusion Using Overhauser-Enhanced Magnetic Resonance Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.77, issue.10, pp.1655-64, 2009.
DOI : 10.1016/0891-5849(94)90019-1

H. Yokoyama, S. Ishida, and T. Ogata, In vivo temporal EPR study using a region-selected intensity determination method to estimate cerebral reducing ability in rats treated with olanzapine, Magnetic Resonance Imaging, vol.28, issue.6, pp.898-902, 2010.
DOI : 10.1016/j.mri.2010.03.019

H. Yokoyama, O. Itoh, M. Aoyama, H. Obara, H. Ohya et al., In vivo EPR imaging by using an acyl-protected hydroxylamine to analyze intracerebral oxidative stress in rats after epileptic seizures, Magnetic Resonance Imaging, vol.18, issue.7, pp.875-911027882, 2000.
DOI : 10.1016/S0730-725X(00)00183-1

H. Yokoyama, O. Itoh, M. Aoyama, H. Obara, H. Ohya et al., In vivo temporal EPR imaging of the brain of rats by using two types of blood-brain barrier-permeable nitroxide radicals, Magnetic Resonance Imaging, vol.20, issue.3, pp.277-8412117610, 2002.
DOI : 10.1016/S0730-725X(02)00491-5

H. Yokoyama, O. Itoh, H. Ohya-nishiguchi, and H. Kamada, Reducing Ability of the Striatum and Cerebral Cortex in Rats following Acute Administration of Risperidone or Haloperidol: An Estimation by in Vivo Electron Paramagnetic Resonance Imaging, Neurochemical Research, vol.27, issue.3, pp.243-248
DOI : 10.1023/A:1014840722626

H. Yokoyama, Y. Lin, O. Itoh, Y. Ueda, A. Nakajima et al., EPR imaging for in vivo analysis of the half-life of a nitroxide radical in the hippocampus and cerebral cortex of rats after epileptic seizures, Free Radical Biology and Medicine, vol.27, issue.3-4, pp.442-810468220, 1999.
DOI : 10.1016/S0891-5849(99)00093-3

H. Yokoyama, S. Morinobu, and Y. Ueda, EPRI to estimate the in vivo intracerebral reducing ability in adolescent rats subjected to neonatal isolation, Journal of Magnetic Resonance Imaging, vol.24, issue.5, pp.637-677, 2006.
DOI : 10.1002/jmri.20560

H. Yokoyama, T. Sato, T. Oteki, H. Ohya, and T. Akatsuka, Estimation of the in vivo decay rate of EPR signals for a nitroxide radical in rat brains by a region-selected intensity determination method, Applied Magnetic Resonance, vol.17, issue.2, pp.363-373, 2005.
DOI : 10.1007/BF03167023

Z. Zhelev, V. Gadjeva, I. Aoki, R. Bakalova, and T. Saga, Cell-penetrating nitroxides as molecular sensors for imaging of cancer in vivo, based on tissue redox activity, Molecular BioSystems, vol.89, issue.10, pp.2733-2773, 2012.
DOI : 10.1039/c2mb25128k

J. Zhou, Y. Tsai, H. Weng, and L. Tang, Noninvasive assessment of localized inflammatory responses, Free Radical Biology and Medicine, vol.52, issue.1, pp.218-244, 2012.
DOI : 10.1016/j.freeradbiomed.2011.10.452

&. Antioxidants and . Redox, Signaling Imaging ROS-induced modifications in living systems

&. Antioxidants and . Redox, Signaling Imaging ROS-induced modifications in living systems

. Fig, Examples of Nanoparticles (NPs) adapted for ROS sensing (A) Polymer-based NPs embedded with ROS-sensing and reference fluorescent dyes

. Nps, Metallic NP fluorescence quenching upon oxidation of functionalized ROS sensitive molecules (blue) Adapted from(133). (To see this illustration in color the reader is referred to the web version of this article at www

&. Antioxidants and . Redox, Signaling Imaging ROS-induced modifications in living systems