R. M. Touyz and A. M. Briones, Reactive oxygen species and vascular biology: implications in human hypertension, Hypertension Research, vol.26, issue.1, pp.5-14, 2011.
DOI : 10.1159/000156715

C. A. Papaharalambus and K. K. Griendling, Basic Mechanisms of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Injury, Trends in Cardiovascular Medicine, vol.17, issue.2, pp.48-54, 2007.
DOI : 10.1016/j.tcm.2006.11.005

J. Huot, F. Houle, F. Marceau, and J. Landry, Oxidative Stress??Induced Actin Reorganization Mediated by the p38 Mitogen-Activated Protein Kinase/Heat Shock Protein 27 Pathway in Vascular Endothelial Cells, Circulation Research, vol.80, issue.3, pp.383-392, 1997.
DOI : 10.1161/01.RES.80.3.383

A. Boueiz and P. M. Hassoun, Regulation of endothelial barrier function by reactive oxygen and nitrogen species, Microvascular Research, vol.77, issue.1, pp.26-34, 2009.
DOI : 10.1016/j.mvr.2008.10.005

N. Sakamoto, T. Ishibashi, K. Sugimoto, T. Sawamura, T. Sakamoto et al., signaling pathways in endothelial cells, Journal of Cellular Physiology, vol.45, issue.3, pp.706-715, 2009.
DOI : 10.1002/jcp.21818

J. B. Seal and B. L. Gewertz, Vascular Dysfunction in Ischemia-Reperfusion Injury, Annals of Vascular Surgery, vol.19, issue.4, pp.572-584, 2005.
DOI : 10.1007/s10016-005-4616-7

J. R. Stone, C. , and T. , The Role of Hydrogen Peroxide in Endothelial Proliferative Responses, Endothelium, vol.87, issue.4, pp.231-238, 2002.
DOI : 10.1165/ajrcmb.12.1.7529030

H. Zhan, T. Suzuki, K. Aizawa, K. Miyagawa, and R. Nagai, Ataxia Telangiectasia Mutated (ATM)-mediated DNA Damage Response in Oxidative Stress-induced Vascular Endothelial Cell Senescence, Journal of Biological Chemistry, vol.285, issue.38, pp.29662-29670, 2010.
DOI : 10.1074/jbc.M110.125138

J. Haendeler, R. Popp, C. Goy, V. Tischler, A. M. Zeiher et al., Cathepsin D and H2O2 Stimulate Degradation of Thioredoxin-1: IMPLICATION FOR ENDOTHELIAL CELL APOPTOSIS, Journal of Biological Chemistry, vol.280, issue.52, pp.42945-42951, 2005.
DOI : 10.1074/jbc.M506985200

C. Hermann, A. M. Zeiher, and S. Dimmeler, Shear Stress Inhibits H2O2-Induced Apoptosis of Human Endothelial Cells by Modulation of the Glutathione Redox Cycle and Nitric Oxide Synthase, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.12, pp.3588-3592, 1997.
DOI : 10.1161/01.ATV.17.12.3588

D. Harrison, K. K. Griendling, U. Landmesser, B. Hornig, and H. Drexler, Role of oxidative stress in atherosclerosis, The American Journal of Cardiology, vol.91, issue.3, pp.7-11, 2003.
DOI : 10.1016/S0002-9149(02)03144-2

V. M. Victor, M. Rocha, E. Solá, C. Bañuls, K. Garcia-malpartida et al., Oxidative Stress, Endothelial Dysfunction and Atherosclerosis, Current Pharmaceutical Design, vol.15, issue.26, pp.2988-3002, 2009.
DOI : 10.2174/138161209789058093

D. Javeshghani, E. L. Schiffrin, M. R. Sairam, and R. M. Touyz, Potentiation of vascular oxidative stress and nitric oxide-mediated endothelial dysfunction by high-fat diet in a mouse model of estrogen deficiency and hyperandrogenemia, Journal of the American Society of Hypertension, vol.3, issue.5, pp.295-305, 2009.
DOI : 10.1016/j.jash.2009.07.002

V. Schini-kerth, Role of polyphenols in improving endothelial dysfunction in diabetes. Free Radic, Biol. Med, vol.75, pp.11-12, 2014.

I. Corre, M. Guillonneau, P. , and F. , Membrane Signaling Induced by High Doses of Ionizing Radiation in the Endothelial Compartment. Relevance in Radiation Toxicity, International Journal of Molecular Sciences, vol.14, issue.11, pp.22678-22696, 2013.
DOI : 10.3390/ijms141122678

A. Cuenda and S. Rousseau, p38 MAP-Kinases pathway regulation, function and role in human diseases, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1773, issue.8, pp.1358-1375, 2007.
DOI : 10.1016/j.bbamcr.2007.03.010

L. R. Coulthard, D. E. White, D. L. Jones, M. F. Mcdermott, and S. A. Burchill, (MAPK): stress responses from molecular mechanisms to therapeutics, Trends Mol. Med, vol.15, pp.38-369, 2009.

A. Cuadrado, V. Lafarga, P. C. Cheung, I. Dolado, S. Llanos et al., A new p38 MAP kinase-regulated transcriptional coactivator that stimulates p53-dependent apoptosis, The EMBO Journal, vol.7, issue.8, pp.2115-2126, 2007.
DOI : 10.1038/sj.emboj.7601657

P. Kumar, A. I. Miller, and P. J. Polverini, p38 MAPK Mediates ??-Irradiation-induced Endothelial Cell Apoptosis, and Vascular Endothelial Growth Factor Protects Endothelial Cells through the Phosphoinositide 3-Kinase-Akt-Bcl-2 Pathway, Journal of Biological Chemistry, vol.279, issue.41, pp.43352-43360, 2004.
DOI : 10.1074/jbc.M405777200

S. Grisendi, C. Mecucci, B. Falini, and P. P. Pandolfi, Nucleophosmin and cancer, Nature Reviews Cancer, vol.106, issue.7, pp.493-505, 2006.
DOI : 10.1038/nrc1885

M. Okuwaki, The Structure and Functions of NPM1/Nucleophsmin/B23, a Multifunctional Nucleolar Acidic Protein, Journal of Biochemistry, vol.143, issue.4, 2008.
DOI : 10.1093/jb/mvm222

P. Tarapore, K. Shinmura, H. Suzuki, Y. Tokuyama, S. H. Kim et al., phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing, FEBS Letters, vol.17, issue.2, pp.399-409, 2006.
DOI : 10.1016/j.febslet.2005.12.022

C. Yang, D. A. Maiguel, and F. Carrier, Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins, Nucleic Acids Research, vol.30, issue.10, pp.2251-2260, 2002.
DOI : 10.1093/nar/30.10.2251

P. Ramsamooj, V. Notario, and A. Dritschilo, Modification of Nucleolar Protein B23 after Exposure to Ionizing Radiation, Radiation Research, vol.143, issue.2, pp.158-164, 1995.
DOI : 10.2307/3579152

I. Paron, A. Elia, C. D-'ambrosio, A. Scaloni, F. D-'aurizio et al., A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells, Biochemical Journal, vol.378, issue.3, pp.929-937, 2004.
DOI : 10.1042/bj20031190

T. Kinumi, Y. Ogawa, J. Kimata, Y. Saito, Y. Yoshida et al., Proteomic characterization of oxidative dysfunction in human umbilical vein endothelial cells (HUVEC) induced by exposure to oxidized LDL, Free Radical Research, vol.266, issue.12, pp.1335-1344, 2005.
DOI : 10.1161/01.CIR.101.2.171

A. Csiszar, M. Wang, E. G. Lakatta, and Z. Ungvari, Inflammation and endothelial dysfunction during aging: role of NF-??B, Journal of Applied Physiology, vol.105, issue.4, pp.1333-1341, 2008.
DOI : 10.1152/japplphysiol.90470.2008

T. M. Chang, G. Y. Shi, H. L. Wu, C. H. Wu, Y. D. Su et al., Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells, Evidence-Based Complementary and Alternative Medicine, vol.279, issue.1, p.213050, 2011.
DOI : 10.1016/j.lfs.2004.06.010

J. Guay, H. Lambert, G. Gingras-breton, J. N. Lavoie, J. Huot et al., Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27, J. Cell Sci, vol.110, pp.357-368, 1997.

D. Reboutier, M. B. Troadec, J. Y. Cremet, K. Fukasawa, and C. Prigent, Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89, The Journal of Cell Biology, vol.29, issue.1, pp.19-26, 2012.
DOI : 10.1038/onc.2008.234

URL : https://hal.archives-ouvertes.fr/inserm-00679670

M. C. Côté, J. R. Lavoie, F. Houle, A. Poirier, S. Rousseau et al., Regulation of Vascular Endothelial Growth Factor-induced Endothelial Cell Migration by LIM Kinase 1-mediated Phosphorylation of Annexin 1, Journal of Biological Chemistry, vol.285, issue.11, pp.8013-8021, 2010.
DOI : 10.1074/jbc.M109.098665

N. Driessens, S. Versteyhe, C. Ghaddhab, A. Burniat, X. De-deken et al., Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ, Endocrine Related Cancer, vol.16, issue.3, pp.845-856, 2009.
DOI : 10.1677/ERC-09-0020

N. Trempolec, N. Dave-coll, and A. R. Nebreda, SnapShot: p38 MAPK Substrates, Cell, vol.152, issue.4, pp.924-924, 2013.
DOI : 10.1016/j.cell.2013.01.047

J. W. Chambers and P. V. Lograsso, Mitochondrial c-Jun Nterminal kinase (JNK) signaling initiates physiological changes resulting in amplification of reactive oxygen species generation, 2011.

S. Hsu, R. Thakar, D. Liepmann, L. , and S. , Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces, Biochemical and Biophysical Research Communications, vol.337, issue.1, pp.401-409, 2005.
DOI : 10.1016/j.bbrc.2005.08.272

J. Huot, H. Lambert, J. N. Lavoie, A. Guimond, F. Houle et al., Characterization of 45-kDa/54-kDa HSP27 Kinase, a Stress-Sensitive Kinase Which may Activate the Phosphorylation-Dependent Protective Function of Mammalian 27-kDa Heat-shock Protein HSP27, European Journal of Biochemistry, vol.265, issue.1-2, pp.416-427, 1995.
DOI : 10.1016/0092-8674(94)90380-8

K. Ishitsuka, T. Hideshima, P. Neri, S. Vallet, N. Shiraishi et al., p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications, British Journal of Haematology, vol.47, issue.5, pp.38-598, 2008.
DOI : 10.1111/j.1365-2141.2006.06443.x

L. Yan, S. Guo, M. Brault, J. Harmon, R. P. Robertson et al., The B55??-containing PP2A holoenzyme dephosphorylates FOXO1 in islet ??-cells under oxidative stress, Biochemical Journal, vol.48, issue.2, pp.239-247, 2012.
DOI : 10.1677/JME-06-0053

L. Cicchillitti, P. Fasanaro, P. Biglioli, M. C. Capogrossi, and F. Martelli, Oxidative Stress Induces Protein Phosphatase 2A-dependent Dephosphorylation of the Pocket Proteins pRb, p107, and p130, Journal of Biological Chemistry, vol.278, issue.21, pp.19509-19517, 2003.
DOI : 10.1074/jbc.M300511200

Y. C. Du, S. Gu, J. Zhou, T. Wang, H. Cai et al., The Dynamic Alterations of H2AX Complex during DNA Repair Detected by a Proteomic Approach Reveal the Critical Roles of Ca2+/Calmodulin in the Ionizing Radiation-induced Cell Cycle Arrest, Molecular & Cellular Proteomics, vol.5, issue.6, pp.1033-1044, 2006.
DOI : 10.1074/mcp.M500327-MCP200

A. J. Davis, B. P. Chen, C. , and D. J. , DNA-PK: A dynamic enzyme in a versatile DSB repair pathway, DNA Repair, vol.17, pp.21-29, 2014.
DOI : 10.1016/j.dnarep.2014.02.020

T. Stiff, M. Driscoll, N. Rief, K. Iwabuchi, M. Löbrich et al., ATM and DNA-PK Function Redundantly to Phosphorylate H2AX after Exposure to Ionizing Radiation, Cancer Research, vol.64, issue.7, pp.2390-2396, 2004.
DOI : 10.1158/0008-5472.CAN-03-3207

B. P. Chen, N. Uematsu, J. Kobayashi, Y. Lerenthal, A. Krempler et al., Ataxia Telangiectasia Mutated (ATM) Is Essential for DNA-PKcs Phosphorylations at the Thr-2609 Cluster upon DNA Double Strand Break, Journal of Biological Chemistry, vol.282, issue.9, pp.6582-6587, 2007.
DOI : 10.1074/jbc.M611605200

Y. Peng, R. G. Woods, H. Beamish, R. Ye, S. P. Lees-miller et al., Deficiency in the Catalytic Subunit of DNA-Dependent Protein Kinase Causes Down-Regulation of ATM, Cancer Research, vol.65, issue.5, pp.1670-1677, 2005.
DOI : 10.1158/0008-5472.CAN-04-3451

K. R. Sekhar, M. Benamar, A. Venkateswaran, S. Sasi, N. R. Penthala et al., Targeting Nucleophosmin 1 Represents a Rational Strategy for Radiation Sensitization, International Journal of Radiation Oncology*Biology*Physics, vol.89, issue.5, pp.1106-1114, 2014.
DOI : 10.1016/j.ijrobp.2014.04.012

D. Bertwistle, M. Sugimoto, and C. J. Sherr, Physical and Functional Interactions of the Arf Tumor Suppressor Protein with Nucleophosmin/B23, Molecular and Cellular Biology, vol.24, issue.3, pp.985-996, 2004.
DOI : 10.1128/MCB.24.3.985-996.2004

N. Bolli, I. Nicoletti, D. Marco, M. F. Bigerna, B. Pucciarini et al., Born to Be Exported: COOH-Terminal Nuclear Export Signals of Different Strength Ensure Cytoplasmic Accumulation of Nucleophosmin Leukemic Mutants, Cancer Research, vol.67, issue.13, pp.6230-6237, 2007.
DOI : 10.1158/0008-5472.CAN-07-0273

B. Falini, N. Bolli, A. Liso, M. P. Martelli, R. Mannucci et al., Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications, Leukemia, vol.110, issue.10, pp.1731-1743, 2009.
DOI : 10.1021/ja0693587

I. Arregi, J. Falces, A. Olazabal-herrero, M. Alonso-mariño, S. G. Taneva et al., Leukemia-Associated Mutations in Nucleophosmin Alter Recognition by CRM1: Molecular Basis of Aberrant Transport, PLOS ONE, vol.27, issue.17, 2015.
DOI : 10.1371/journal.pone.0130610.s004

B. Falini, C. Mecucci, E. Tiacci, M. Alcalay, R. Rosati et al., Cytoplasmic Nucleophosmin in Acute Myelogenous Leukemia with a Normal Karyotype, New England Journal of Medicine, vol.352, issue.3, pp.254-266, 2005.
DOI : 10.1056/NEJMoa041974

Z. Ren, J. L. Aerts, J. J. Pen, C. Heirman, K. Breckpot et al., Phosphorylated STAT3 physically interacts with NPM and transcriptionally enhances its expression in cancer, Oncogene, vol.127, issue.13, pp.1650-1657, 2015.
DOI : 10.1038/onc.2014.109

N. Khandelwal, J. Simpson, G. Taylor, S. Rafique, A. Whitehouse et al., Nucleolar NF-??B/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin, Cell Death and Differentiation, vol.19, issue.12, pp.1889-1903, 2011.
DOI : 10.1038/cdd.2011.79

Y. Tokuyama, H. F. Horn, K. Kawamura, P. Tarapore, and K. Fukasawa, Specific Phosphorylation of Nucleophosmin on Thr199 by Cyclin- dependent Kinase 2-Cyclin E and Its Role in Centrosome Duplication, Journal of Biological Chemistry, vol.276, issue.24, pp.21529-21537, 2001.
DOI : 10.1074/jbc.M100014200

G. Sarek, A. Järviluoma, H. M. Moore, S. Tojkander, S. Vartia et al., Nucleophosmin Phosphorylation by v-Cyclin-CDK6 Controls KSHV Latency, PLoS Pathogens, vol.76, issue.3, 2010.
DOI : 10.1371/journal.ppat.1000818.s010

A. Koike, H. Nishikawa, W. Wu, Y. Okada, A. R. Venkitaraman et al., Recruitment of Phosphorylated NPM1 to Sites of DNA Damage through RNF8-Dependent Ubiquitin Conjugates, Cancer Research, vol.70, issue.17, pp.6746-6756, 2010.
DOI : 10.1158/0008-5472.CAN-10-0382

M. Okuda, H. F. Horn, P. Tarapore, Y. Tokuyama, A. G. Smulian et al., Nucleophosmin/B23 Is a Target of CDK2/Cyclin E in Centrosome Duplication, Cell, vol.103, issue.1, pp.127-140, 2000.
DOI : 10.1016/S0092-8674(00)00093-3

K. Hiromura, J. W. Pippin, M. J. Blonski, J. M. Roberts, and S. J. Shankland, The subcellular localization of cyclin dependent kinase 2 determines the fate of mesangial cells: role in apoptosis and proliferation, Oncogene, vol.21, issue.11, pp.1750-1758, 2002.
DOI : 10.1038/sj.onc.1205238

T. A. Garrett, J. D. Van-buul, and K. Burridge, VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2, Experimental Cell Research, vol.313, issue.15, pp.3285-3297, 2007.
DOI : 10.1016/j.yexcr.2007.05.027

Y. Zoughlami, A. M. Van-stalborgh, P. B. Van-hennik, and P. L. Hordijk, Nucleophosmin1 Is a Negative Regulator of the Small GTPase Rac1, PLoS ONE, vol.81, issue.7, p.68477, 2013.
DOI : 10.1371/journal.pone.0068477.g007

C. Y. Lin, B. C. Tan, H. Liu, C. J. Shih, K. Y. Chien et al., Dephosphorylation of Nucleophosmin by PP1?? Facilitates pRB Binding and Consequent E2F1-dependent DNA Repair, Molecular Biology of the Cell, vol.21, issue.24, pp.4409-4417, 2010.
DOI : 10.1091/mbc.E10-03-0239

J. Jung, K. , H. Kim, D. Kyeong-lee, E. Woo-song et al., Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kB in aged rat kidney. Free Radic, Biol. Med, vol.61, pp.206-217, 2013.

R. K. Rao, C. , and L. W. , Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation, Biochemical and Biophysical Research Communications, vol.293, issue.1, pp.610-616, 2002.
DOI : 10.1016/S0006-291X(02)00268-1

L. Fan, X. Yang, J. Du, M. Marshall, K. Blanchard et al., A Novel Role of p38α MAPK in Mitotic Progression Independent of Its Kinase Activity, Cell Cycle, vol.4, issue.11, pp.1616-1624, 2005.
DOI : 10.4161/cc.4.11.2125

D. Sommer, S. Coleman, S. A. Swanson, and P. M. Stemmer, Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress, Archives of Biochemistry and Biophysics, vol.404, issue.2, pp.271-278, 2002.
DOI : 10.1016/S0003-9861(02)00242-4

L. P. Bharath, T. Ruan, Y. Li, A. Ravindran, X. Wan et al., Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo, Diabetes, vol.64, issue.11, pp.3914-3926, 2015.
DOI : 10.2337/db15-0244

D. Martin, M. Salinas, N. Fujita, T. Tsuruo, and A. Cuadrado, Ceramide and Reactive Oxygen Species Generated by H2O2 Induce Caspase-3-independent Degradation of Akt/Protein Kinase B, Journal of Biological Chemistry, vol.277, issue.45, pp.42943-42952, 2002.
DOI : 10.1074/jbc.M201070200

W. Wang, A. Budhu, M. Forgues, W. , and X. W. , Temporal and spatial control of nucleophosmin by the Ran???Crm1 complex in centrosome duplication, Nature Cell Biology, vol.112, issue.8, pp.823-830, 2005.
DOI : 10.1091/mbc.02-03-0036

M. H. Wu, J. H. Chang, Y. , and B. Y. , Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression, Carcinogenesis, vol.23, issue.1, pp.93-100, 2002.
DOI : 10.1093/carcin/23.1.93

M. Poletto, L. Lirussi, I. Wilson, D. M. Tell, and G. , Nucleophosmin modulates stability, activity, and nucleolar accumulation of base excision repair proteins, Molecular Biology of the Cell, vol.25, issue.10, pp.1641-1652, 2014.
DOI : 10.1091/mbc.E13-12-0717

T. Iyama, I. Wilson, and D. M. , DNA repair mechanisms in dividing and non-dividing cells, DNA Repair, vol.12, issue.8, pp.620-636, 2013.
DOI : 10.1016/j.dnarep.2013.04.015

D. Velic, A. M. Couturier, M. T. Ferreira, A. Rodrigue, G. G. Poirier et al., DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles??? Heel of Cancer, Biomolecules, vol.5, issue.4, pp.3204-3259, 2015.
DOI : 10.3390/biom5043204

S. Y. Lee, J. H. Park, S. Kim, E. J. Park, Y. Yun et al., A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonucleoprotein C1/C2 as chromatin-binding proteins in response to DNA double-strand breaks, Biochemical Journal, vol.388, issue.1, pp.7-15, 2005.
DOI : 10.1042/BJ20042033

R. P. Vanderwaal, L. B. Maggi, . Jr, J. D. Weber, C. R. Hunt et al., Nucleophosmin Redistribution following Heat Shock: A Role in Heat-Induced Radiosensitization, Cancer Research, vol.69, issue.16, pp.6454-6462, 2009.
DOI : 10.1158/0008-5472.CAN-08-4896

K. R. Sekhar, Y. T. Reddy, P. N. Reddy, P. A. Crooks, A. Venkateswaran et al., The Novel Chemical Entity YTR107 Inhibits Recruitment of Nucleophosmin to Sites of DNA Damage, Suppressing Repair of DNA Double-Strand Breaks and Enhancing Radiosensitization, Clinical Cancer Research, vol.17, issue.20, pp.6490-6499, 2011.
DOI : 10.1158/1078-0432.CCR-11-1054