N. Mohandas and P. G. Gallagher, Red cell membrane: past, present, and future, Blood, vol.112, issue.10, pp.3939-3948, 2008.
DOI : 10.1182/blood-2008-07-161166

T. L. Steck, J. A. Kant, and L. P. Sidney-fleischer, [16] Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes, In Methods in Enzymology, vol.31, pp.172-180, 1974.
DOI : 10.1016/0076-6879(74)31019-1

D. E. Discher, N. Mohandas, and E. A. Evans, Molecular maps of red cell deformation: hidden elasticity and in situ connectivity, Science, vol.266, issue.5187, pp.1032-1035, 1994.
DOI : 10.1126/science.7973655

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran et al., Metabolic remodeling of the human red blood cell membrane, Proceedings of the National Academy of Sciences, pp.1289-1294, 2010.
DOI : 10.1073/pnas.0910785107

E. Gauthier, X. Guo, N. Mohandas, and X. An, Phosphorylation-Dependent Perturbations of the 4.1R-Associated Multiprotein Complex of the Erythrocyte Membrane, Biochemistry, vol.50, issue.21, pp.4561-4567, 2011.
DOI : 10.1021/bi200154g

S. Manno, Y. Takakuwa, and N. Mohandas, Modulation of Erythrocyte Membrane Mechanical Function by Protein 4.1 Phosphorylation, Journal of Biological Chemistry, vol.280, issue.9, pp.7581-7587, 2005.
DOI : 10.1074/jbc.M410650200

S. Manno, Y. Takakuwa, K. Nagao, and N. Mohandas, Modulation of Erythrocyte Membrane Mechanical Function by ??-Spectrin Phosphorylation and Dephosphorylation, Journal of Biological Chemistry, vol.270, issue.10, pp.5659-5665, 1995.
DOI : 10.1074/jbc.270.10.5659

P. Hinterdorfer, H. Oberleithner, and H. Schillers, Reduced number of CFTR molecules in erythrocyte plasma membrane of cystic fibrosis patients Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids, Mol Membr Biol Nano Letters, vol.23, issue.8, pp.317-340, 2006.

K. Ritchie, P. S. Low, C. F. Quate, and C. Gerber, Atomic force microscope Studying the mechanics of cellular processes by atomic force microscopy Mechanical Mapping of Single Membrane Proteins at Submolecular Resolution Inside-Out Red Cell Membrane Vesicles: Preparation and Puirification Atomic force microscopy of the erythrocyte membrane skeleton, 12. Radmacher, M, pp.6237-6245, 1970.

L. Grimellec, C. Lesniewska, E. Cachia, C. Schreiber, J. P. Defornel et al., Imaging of the membrane surface of MDCK cells by atomic force microscopy, Biophysical Journal, vol.67, issue.1, pp.36-41, 1994.
DOI : 10.1016/S0006-3495(94)80490-4

P. Natl, A. Sci, U. Meyer, and F. , Topographic Distance And Watershed Lines Critical fluctuations in plasma membrane vesicles, Signal Processing ACS Chem Biol, vol.104, issue.3, pp.4937-4979, 1994.

T. Betz, M. Lenz, J. F. Joanny, and C. Sykes, ATP-dependent mechanics of red blood cells, Proceedings of the National Academy of Sciences, vol.106, issue.36
DOI : 10.1073/pnas.0904614106

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, The nonlinear mechanical response of the red blood cell, Physical Biology, vol.5, issue.3, p.36007, 2008.
DOI : 10.1088/1478-3975/5/3/036007

B. Nobili, Reversible erythrocyte skeleton destabilization is modulated by beta-spectrin phosphorylation in childhood leukemia, Leukemia, vol.15, pp.440-444, 2001.

J. C. Lee and D. E. Discher, Deformation-Enhanced Fluctuations in the Red Cell Skeleton with Theoretical Relations to Elasticity, Connectivity, and Spectrin Unfolding, Biophysical Journal, vol.81, issue.6, pp.3178-92, 2001.
DOI : 10.1016/S0006-3495(01)75954-1

S. Tuvia, S. Levin, A. Bitler, and R. Korenstein, Mechanical Fluctuations of the Membrane???Skeleton Are Dependent on F-Actin ATPase in Human Erythrocytes, The Journal of Cell Biology, vol.260, issue.7, pp.1551-1561, 1998.
DOI : 10.1042/bj3140881