J. Meier and M. Nuack, Incretin-based therapies: where will we be 50??years from now?, Diabetologia, vol.123, issue.8, pp.1745-1750, 2015.
DOI : 10.1007/s00125-015-3608-6

J. Holst, Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery, Current Opinion in Pharmacology, vol.13, issue.6, pp.983-988, 2013.
DOI : 10.1016/j.coph.2013.09.014

D. Drucker, Deciphering Metabolic Messages From the Gut Drives Therapeutic Innovation: The 2014 Banting Lecture, Diabetes, vol.64, issue.2, pp.317-326, 2015.
DOI : 10.2337/db14-1514

H. Parker, F. Gribble, and F. Reimann, The role of gut endocrine cells in control of metabolism and appetite, Experimental Physiology, vol.23, issue.9, p.25210110, 2014.
DOI : 10.1113/expphysiol.2014.079764

R. Heller, Intra-islet regulation of hormone secretion by glucagon-like peptide-1-(7?36) amide, Am J Physiol, vol.2696, issue.1, pp.852-860, 1995.

F. Gribble and F. Reimann, Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium, Annual Review of Physiology, vol.78, issue.1, 2015.
DOI : 10.1146/annurev-physiol-021115-105439

D. Drucker and M. Nauck, The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes, The Lancet, vol.368, issue.9548, pp.1696-1705, 2006.
DOI : 10.1016/S0140-6736(06)69705-5

P. Light, J. Manning-fox, M. Riedel, and M. Wheeler, Glucagon-Like Peptide-1 Inhibits Pancreatic ATP-Sensitive Potassium Channels via a Protein Kinase A- and ADP-Dependent Mechanism, Molecular Endocrinology, vol.16, issue.9, pp.2135-2144, 2002.
DOI : 10.1210/me.2002-0084

P. Béguin, K. Nagashima, M. Nishimura, T. Gonoi, and S. Seino, PKA-mediated phosphorylation of the human KATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation, The EMBO Journal, vol.18, issue.17, pp.4722-4732, 1999.
DOI : 10.1093/emboj/18.17.4722

C. Leech, I. Dzhura, O. Chepurny, G. Kang, F. Schwede et al., Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic ?? cells, Progress in Biophysics and Molecular Biology, vol.107, issue.2, pp.236-247, 2011.
DOI : 10.1016/j.pbiomolbio.2011.07.005

D. Hodson, R. Mitchell, E. Bellomo, G. Sun, L. Vinet et al., Lipotoxicity disrupts incretin-regulated human ?? cell connectivity, Journal of Clinical Investigation, vol.123, issue.10, pp.4182-4194, 2013.
DOI : 10.1172/JCI68459DS1

D. Hodson, R. Mitchell, L. Marselli, T. Pullen, G. Brias et al., ADCY5 Couples Glucose to Insulin Secretion in Human Islets, Diabetes, vol.63, issue.9, pp.3009-3021, 2014.
DOI : 10.2337/db13-1607

B. Lamont, Y. Li, E. Kwan, T. Brown, H. Gaisano et al., Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice, Journal of Clinical Investigation, vol.122, issue.1, pp.388-402, 2012.
DOI : 10.1172/JCI42497DS1

R. Steinert, C. Beglinger, and W. Langhans, Intestinal GLP-1 and satiation???from man to rodents and back, International Journal of Obesity, vol.246, 2015.
DOI : 10.1055/s-2004-826161

M. Donath and R. Burcelin, GLP-1 effects on islets: hormonal, neuronal, or paracrine? Diabetes Care 36 Suppl, pp.145-148, 2013.

J. Murlin, H. Clough, C. Gibbs, and A. Stokes, Aqueous extracts of the pancreas. I Influence on the carbohydrate metabolism of depancreatized animals, J Biol Chem, vol.56, pp.253-296, 1923.

W. Müller, G. Faloona, E. Aguilar-parada, and R. Unger, Abnormal Alpha-Cell Function in Diabetes, New England Journal of Medicine, vol.283, issue.3, pp.109-115, 1970.
DOI : 10.1056/NEJM197007162830301

P. Cryer, The pathophysiology of hypoglycaemia in diabetes, Diabetes Nutr Metab, vol.15, issue.5, pp.330-333, 2002.

R. Shaw, K. Lamia, D. Vasquez, S. Koo, N. Bardeesy et al., The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1646, 2005.
DOI : 10.1126/science.1120781

B. Kahn, T. Alquier, D. Carling, and D. Hardie, AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, Cell Metabolism, vol.1, issue.1, pp.15-25, 2005.
DOI : 10.1016/j.cmet.2004.12.003

B. Kemp, D. Stapleton, D. Campbell, Z. Chen, S. Murthy et al., AMP-activated protein kinase, super metabolic regulator, Biochemical Society Transactions, vol.31, issue.1, pp.162-168, 2003.
DOI : 10.1042/bst0310162

D. Stapleton, E. Woollatt, K. Mitchelhill, J. Nicholl, C. Fernandez et al., AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location, FEBS Letters, vol.15, issue.3, pp.452-456, 1997.
DOI : 10.1016/S0014-5793(97)00569-3

D. Hardie, J. Scott, D. Pan, and E. Hudson, Management of cellular energy by the AMP-activated protein kinase system, FEBS Letters, vol.50, issue.1, pp.113-120, 2003.
DOI : 10.1016/S0014-5793(03)00560-X

B. Xiao, M. Sanders, E. Underwood, R. Heath, F. Mayer et al., Structure of mammalian AMPK and its regulation by ADP, Nature, vol.50, issue.7342, pp.230-233, 2011.
DOI : 10.1038/nature09932

S. Hawley, D. Pan, K. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.cmet.2005.05.009

S. Hawley, J. Boudeau, J. Reid, K. Mustard, L. Udd et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMPactivated protein kinase cascade, Journal of Biology, vol.2, issue.4, pp.28-14511394, 2003.
DOI : 10.1186/1475-4924-2-28

G. Da-silva-xavier, I. Leclerc, A. Varadi, T. Tsuboi, S. Moule et al., Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression, Biochemical Journal, vol.371, issue.3, pp.761-774, 2003.
DOI : 10.1042/bj20021812

G. Sun, A. Tarasov, J. Mcginty, A. Mcdonald, G. Da-silva-xavier et al., Ablation of AMP-activated protein kinase ??1 and ??2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo, Diabetologia, vol.24, issue.5, pp.924-936, 2010.
DOI : 10.1007/s00125-010-1692-1

I. Leclerc, G. Sun, C. Morris, E. Fernandez-millan, M. Nyirenda et al., AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic alpha cells, Diabetologia, vol.38, issue.Pt 3, pp.125-134, 2011.
DOI : 10.1007/s00125-010-1929-z

G. Sun, G. Da-silva-xavier, T. Gorman, C. Priest, A. Solomou et al., LKB1 and AMPK??1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia, Molecular Metabolism, vol.4, issue.4, pp.277-286, 2015.
DOI : 10.1016/j.molmet.2015.01.006

F. Giardiello, S. Welsh, S. Hamilton, G. Offerhaus, A. Gittelsohn et al., Increased Risk of Cancer in the Peutz???Jeghers Syndrome, New England Journal of Medicine, vol.316, issue.24, pp.1511-1514, 1987.
DOI : 10.1056/NEJM198706113162404

J. Lizcano, O. Goransson, R. Toth, M. Deak, N. Morrice et al., LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, The EMBO Journal, vol.23, issue.4, pp.833-843, 2004.
DOI : 10.1038/sj.emboj.7600110

S. Zac-varghese, S. Trapp, P. Richards, S. Sayers, G. Sun et al., The Peutz-Jeghers kinase LKB1 suppresses polyp growth from intestinal cells of a proglucagon-expressing lineage in mice, Disease Models & Mechanisms, vol.7, issue.11, pp.1275-1286, 2014.
DOI : 10.1242/dmm.014720

H. Parker, A. Adriaenssens, G. Rogers, P. Richards, H. Koepsell et al., Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion, Diabetologia, vol.123, issue.9, pp.2445-2455, 2012.
DOI : 10.1007/s00125-012-2585-2

H. Soedling, D. Hodson, A. Adrianssens, F. Gribble, F. Reimann et al., Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells, Molecular Metabolism, vol.4, issue.9, pp.619-630, 2015.
DOI : 10.1016/j.molmet.2015.06.007

M. Ravier and R. G. , Isolation and Culture of Mouse Pancreatic Islets for Ex Vivo Imaging Studies with Trappable or Recombinant Fluorescent Probes, Methods Mol Biol, vol.633, pp.171-184, 2010.
DOI : 10.1007/978-1-59745-019-5_12

T. Monteverde, N. Muthalagu, J. Port, and D. Murphy, Evidence of cancer-promoting roles for AMPK and related kinases, FEBS Journal, vol.14, issue.24, 2015.
DOI : 10.1111/febs.13534

D. Cohen, Y. Tian, and A. Müsch, Par1b Promotes Hepatic-type Lumen Polarity in Madin Darby Canine Kidney Cells via Myosin II- and E-Cadherin-dependent Signaling, Molecular Biology of the Cell, vol.18, issue.6, pp.2203-2215, 2007.
DOI : 10.1091/mbc.E07-02-0095

Z. Granot, A. Swisa, J. Magenheim, M. Stolovich-rain, W. Fujimoto et al., LKB1 Regulates Pancreatic ?? Cell Size, Polarity, and Function, Cell Metabolism, vol.10, issue.4, pp.296-308, 2009.
DOI : 10.1016/j.cmet.2009.08.010

A. Fu, A. Ng, C. Depatie, N. Wijesekara, Y. He et al., Loss of Lkb1 in Adult ?? Cells Increases ?? Cell Mass and Enhances Glucose Tolerance in Mice, Cell Metabolism, vol.10, issue.4, pp.285-295, 2009.
DOI : 10.1016/j.cmet.2009.08.008

G. Kusakai, A. Suzuki, T. Ogura, M. Kaminishi, and H. Esumi, Strong association of ARK5 with tumor invasion and metastasis, J Exp Clin Cancer Res, vol.23, issue.2, pp.263-268, 2004.

T. Namiki, A. Tanemura, J. Valencia, S. Coelho, T. Passeron et al., AMP kinase-related kinase NUAK2 affects tumor growth, migration, and clinical outcome of human melanoma, Proceedings of the National Academy of Sciences, vol.108, issue.16, pp.6597-6602, 2011.
DOI : 10.1073/pnas.1007694108

F. Duca, C. Cote, B. Rasmussen, M. Zadeh-tahmasebi, G. Rutter et al., Metformin activates a duodenal Ampk???dependent pathway to lower hepatic glucose production in rats, Nature Medicine, vol.361, issue.5, pp.506-511, 2015.
DOI : 10.1038/nm.3787

A. Mulherin, A. Oh, H. Kim, A. Grieco, L. Lauffer et al., Mechanisms Underlying Metformin-Induced Secretion of Glucagon-Like Peptide-1 from the Intestinal L Cell, Endocrinology, vol.152, issue.12, pp.4610-4619, 2011.
DOI : 10.1210/en.2011-1485

N. Yasuda, T. Inoue, T. Nagakura, K. Yamazaki, K. Kira et al., Enhanced secretion of glucagon-like peptide 1 by biguanide compounds, Biochemical and Biophysical Research Communications, vol.298, issue.5, pp.779-784, 2002.
DOI : 10.1016/S0006-291X(02)02565-2

M. Kim, J. Jee, S. Park, M. Lee, K. Kim et al., Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling, Journal of Endocrinology, vol.220, issue.2, pp.117-128, 2014.
DOI : 10.1530/JOE-13-0381

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Journal of Clinical Investigation, vol.120, issue.7, pp.2355-2369, 2010.
DOI : 10.1172/JCI40671DS1

URL : https://hal.archives-ouvertes.fr/inserm-00495746

H. Kennedy, A. Pouli, E. Ainscow, L. Jouaville, R. Rizzuto et al., Glucose Generates Sub-plasma Membrane ATP Microdomains in Single Islet ??-Cells: POTENTIAL ROLE FOR STRATEGICALLY LOCATED MITOCHONDRIA, Journal of Biological Chemistry, vol.274, issue.19, pp.13281-13291, 1999.
DOI : 10.1074/jbc.274.19.13281

H. Olsen, S. Theander, K. Bokvist, K. Buschard, C. Wollheim et al., Glucose Stimulates Glucagon Release in Single Rat ??-Cells by Mechanisms that Mirror the Stimulus-Secretion Coupling in ??-Cells, Endocrinology, vol.146, issue.11, pp.4861-4870, 2005.
DOI : 10.1210/en.2005-0800

M. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche et al., Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nature Communications, vol.4, pp.7629-7639, 2015.
DOI : 10.1111/j.1463-1326.2009.01181.x

T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for Fatty Acid "Sparing" Effect on Glucose-induced Transcription: REGULATION OF CARBOHYDRATE-RESPONSIVE ELEMENT-BINDING PROTEIN BY AMP-ACTIVATED PROTEIN KINASE, Journal of Biological Chemistry, vol.277, issue.6, pp.3829-3835, 2002.
DOI : 10.1074/jbc.M107895200

P. Herrera, Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages, Development, vol.127, issue.11, pp.2317-2322, 2000.