Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers

Automatic graph cut segmentation of multiple sclerosis lesions

Laurence Catanese 1 Olivier Commowick 1 Christian Barillot 1, * 
* Corresponding author
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : A fully automated segmentation algorithm for Multiple Sclerosis (MS) lesions is presented. Our method includes two main steps: the detection of lesions by graph cut initialized with a robust Expectation-Maximization (EM) algorithm and the application of rules to remove false positives. Our algorithm will be tested on the ISBI 2015 challenge longitudinal data. For each patient, a unique parameter set is used to run the algorithm.
Complete list of metadata

https://www.hal.inserm.fr/inserm-01304109
Contributor : Olivier Commowick Connect in order to contact the contributor
Submitted on : Tuesday, April 19, 2016 - 10:41:50 AM
Last modification on : Thursday, January 20, 2022 - 4:20:32 PM
Long-term archiving on: : Tuesday, November 15, 2016 - 6:14:29 AM

File

ISBI_Challenge_Catanese.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inserm-01304109, version 1

Citation

Laurence Catanese, Olivier Commowick, Christian Barillot. Automatic graph cut segmentation of multiple sclerosis lesions. ISBI Longitudinal Multiple Sclerosis Lesion Segmentation Challenge, Apr 2015, New York, United States. ⟨inserm-01304109⟩

Share

Metrics

Record views

186

Files downloads

195