W. Lim and T. Pawson, Phosphotyrosine Signaling: Evolving a New Cellular Communication System, Cell, vol.142, issue.5, pp.661-667
DOI : 10.1016/j.cell.2010.08.023

B. Liu and P. Nash, Evolution of SH2 domains and phosphotyrosine signalling networks, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.6, issue.7, pp.2556-2573, 1602.
DOI : 10.1186/gb-2005-6-7-r58

G. Manning, D. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The Protein Kinase Complement of the Human Genome, Science, vol.298, issue.5600, pp.1912-1934, 2002.
DOI : 10.1126/science.1075762

J. Schlessinger, Cell Signaling by Receptor Tyrosine Kinases, Cell, vol.103, issue.2, pp.211-225, 2000.
DOI : 10.1016/S0092-8674(00)00114-8

A. Tsygankov, Non-receptor protein tyrosine kinases, Frontiers in Bioscience, vol.8, issue.6, pp.595-635, 2003.
DOI : 10.2741/1106

P. Blume-jensen and T. Hunter, Oncogenic kinase signalling, Nature, vol.411, issue.6835, pp.355-365, 2001.
DOI : 10.1038/35077225

D. Krause, V. Etten, and R. , Tyrosine Kinases as Targets for Cancer Therapy, New England Journal of Medicine, vol.353, issue.2, pp.172-187, 2005.
DOI : 10.1056/NEJMra044389

A. Yoshimura, T. Ohkubo, T. Kiguchi, N. Jenkins, D. Gilbert et al., A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors, EMBO J, vol.14, issue.12, pp.2816-2826, 1995.

T. Pawson and J. Scott, Signaling Through Scaffold, Anchoring, and Adaptor Proteins, Science, vol.278, issue.5346, pp.2075-2080, 1997.
DOI : 10.1126/science.278.5346.2075

E. Lowenstein, R. Daly, A. Batzer, W. Li, B. Margolis et al., The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling, Cell, vol.70, issue.3, pp.431-442, 1992.
DOI : 10.1016/0092-8674(92)90167-B

G. Pelicci, L. Lanfrancone, F. Grignani, J. Mcglade, F. Cavallo et al., A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction, Cell, vol.70, issue.1, pp.93-104, 1992.
DOI : 10.1016/0092-8674(92)90536-L

B. Mayer, M. Hamaguchi, and H. Hanafusa, A novel viral oncogene with structural similarity to phospholipase C, Nature, vol.332, issue.6161, pp.272-275, 1988.
DOI : 10.1038/332272a0

P. Van-der-geer, T. Hunter, and R. Lindberg, Receptor Protein-Tyrosine Kinases and Their Signal Transduction Pathways, Annual Review of Cell Biology, vol.10, issue.1, pp.251-337, 1994.
DOI : 10.1146/annurev.cb.10.110194.001343

R. Starr, T. Willson, E. Viney, L. Murray, J. Rayner et al., A family of cytokine-inducible inhibitors of signalling, Nature, vol.387, issue.6636, pp.917-921, 1997.

T. Endo, M. Masuhara, M. Yokouchi, R. Suzuki, H. Sakamoto et al., A new protein containing an SH2 domain that inhibits JAK kinases, Nature, vol.387, issue.6636, pp.921-924, 1997.

T. Naka, M. Narazaki, M. Hirata, T. Matsumoto, S. Minamoto et al., Structure and function of a new STAT-induced STAT inhibitor, Nature, vol.387, issue.6636, pp.924-929, 1997.

M. Trengove and A. Ward, SOCS proteins in development and disease, Am J Clin Exp Immunol, vol.2, issue.1, pp.1-29, 2013.

J. Kazi, N. Kabir, A. Flores-morales, and L. Ronnstrand, SOCS proteins in regulation of receptor tyrosine kinase signaling, Cellular and Molecular Life Sciences, vol.174, issue.17, pp.3297-3310, 2014.
DOI : 10.1007/s00018-014-1619-y

J. Babon, I. Lucet, J. Murphy, N. Nicola, and L. Varghese, The molecular regulation of Janus kinase (JAK) activation, Biochemical Journal, vol.118, issue.1, pp.1-13, 2014.
DOI : 10.1007/s11248-014-9795-y

J. Piessevaux, D. Lavens, F. Peelman, and J. Tavernier, The many faces of the SOCS box, Cytokine & Growth Factor Reviews, vol.19, issue.5-6, pp.5-6371, 2008.
DOI : 10.1016/j.cytogfr.2008.08.006

A. Mansell, R. Smith, S. Doyle, P. Gray, J. Fenner et al., Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation, Nature Immunology, vol.166, issue.2, pp.148-155, 2006.
DOI : 10.1038/ni1299

L. Rui, M. Yuan, D. Frantz, S. Shoelson, and M. White, SOCS-1 and SOCS-3 Block Insulin Signaling by Ubiquitin-mediated Degradation of IRS1 and IRS2, Journal of Biological Chemistry, vol.277, issue.44, pp.42394-42398, 2002.
DOI : 10.1074/jbc.C200444200

T. Landsman and D. Waxman, Role of the Cytokine-induced SH2 Domain-containing Protein CIS in Growth Hormone Receptor Internalization, Journal of Biological Chemistry, vol.280, issue.45, pp.37471-37480, 2005.
DOI : 10.1074/jbc.M504125200

M. Irandoust, L. Aarts, O. Roovers, J. Gits, S. Erkeland et al., Suppressor of cytokine signaling 3 controls lysosomal routing of G-CSF receptor, The EMBO Journal, vol.78, issue.7, pp.1782-1793, 2007.
DOI : 10.1038/sj.emboj.7601640

P. Ram and D. Waxman, SOCS/CIS Protein Inhibition of Growth Hormone-stimulated STAT5 Signaling by Multiple Mechanisms, Journal of Biological Chemistry, vol.274, issue.50, pp.35553-35561, 1999.
DOI : 10.1074/jbc.274.50.35553

H. Yasukawa, H. Misawa, H. Sakamoto, M. Masuhara, A. Sasaki et al., The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop, The EMBO Journal, vol.18, issue.5, pp.1309-1320, 1999.
DOI : 10.1093/emboj/18.5.1309

A. Sasaki, H. Yasukawa, A. Suzuki, S. Kamizono, T. Syoda et al., Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain, Genes to Cells, vol.14, issue.6, pp.339-351, 1999.
DOI : 10.1038/sj.leu.2401238

C. Brender, C. R. Metcalf, D. Handman, E. Starr, R. Huntington et al., SOCS5 Is Expressed in Primary B and T Lymphoid Cells but Is Dispensable for Lymphocyte Production and Function, Molecular and Cellular Biology, vol.24, issue.13, pp.6094-6103, 2004.
DOI : 10.1128/MCB.24.13.6094-6103.2004

D. Krebs, R. Uren, D. Metcalf, S. Rakar, J. Zhang et al., SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Molecular and cellular biology, pp.4567-4578, 2002.

D. Krebs, D. Metcalf, T. Merson, A. Voss, T. Thomas et al., Development of hydrocephalus in mice lacking SOCS7, Proceedings of the National Academy of Sciences, vol.101, issue.43, pp.15446-15451, 2004.
DOI : 10.1073/pnas.0406870101

A. Banks, J. Li, L. Mckeag, M. Hribal, M. Kashiwada et al., Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans, Journal of Clinical Investigation, vol.115, issue.9, pp.2462-2471, 2005.
DOI : 10.1172/JCI23853

A. Pandey, H. Duan, and V. Dixit, Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase, J Biol Chem, vol.270, issue.33, pp.19201-19204, 1995.

M. Loreto, D. Berry, and C. Mcglade, Functional Cooperation between c-Cbl and Src-Like Adaptor Protein 2 in the Negative Regulation of T-Cell Receptor Signaling, Molecular and Cellular Biology, vol.22, issue.12, pp.4241-4255, 2002.
DOI : 10.1128/MCB.22.12.4241-4255.2002

A. Pandey, N. Ibarrola, I. Kratchmarova, M. Fernandez, S. Constantinescu et al., A Novel Src Homology 2 Domain-containing Molecule, Src-like Adapter Protein-2 (SLAP-2), Which Negatively Regulates T Cell Receptor Signaling, Journal of Biological Chemistry, vol.277, issue.21, pp.19131-19138, 2002.
DOI : 10.1074/jbc.M110318200

S. Holland, X. Liao, M. Mendenhall, X. Zhou, J. Pardo et al., Functional Cloning of Src-like Adapter Protein-2 (SLAP-2), a Novel Inhibitor of Antigen Receptor Signaling, The Journal of Experimental Medicine, vol.18, issue.9, pp.1263-1276, 2001.
DOI : 10.1016/S0952-7915(98)80170-2

L. Dragone, L. Shaw, M. Myers, and A. Weiss, SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking, Immunological Reviews, vol.27, issue.1, pp.218-228, 2009.
DOI : 10.1111/j.1600-065X.2009.00827.x

T. Sosinowski, N. Killeen, and A. Weiss, The Src-like Adaptor Protein Downregulates the T Cell Receptor on CD4+CD8+ Thymocytes and Regulates Positive Selection, Immunity, vol.15, issue.3, pp.457-466, 2001.
DOI : 10.1016/S1074-7613(01)00195-9

A. Pandey, Src-like adaptor protein (Slap) is a negative regulator of mitogenesis, Curr Biol, vol.8, issue.17, pp.975-978, 1998.

J. Kazi and L. Ronnstrand, Src-Like Adaptor Protein (SLAP) Binds to the Receptor Tyrosine Kinase Flt3 and Modulates Receptor Stability and Downstream Signaling, PLoS ONE, vol.21, issue.12, p.53509, 2012.
DOI : 10.1371/journal.pone.0053509.g009

C. Naudin, A. Sirvent, C. Leroy, R. Larive, V. Simon et al., SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2, Nature Communications, vol.1790, p.3159, 2014.
DOI : 10.1038/ncomms4159

M. Myers, T. Sosinowski, L. Dragone, C. White, H. Band et al., Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex, Nature Immunology, vol.275, issue.1, pp.57-66, 2006.
DOI : 10.1038/ni1291

M. Myers, L. Dragone, and A. Weiss, Src-like adaptor protein down-regulates T cell receptor (TCR)???CD3 expression by targeting TCR?? for degradation, The Journal of Cell Biology, vol.18, issue.2, pp.285-294, 2005.
DOI : 10.1074/jbc.M010738200

L. Dragone, M. Myers, C. White, T. Sosinowski, and A. Weiss, Src-Like Adaptor Protein Regulates B Cell Development and Function, The Journal of Immunology, vol.176, issue.1, pp.335-345, 2006.
DOI : 10.4049/jimmunol.176.1.335

T. Sosinowski, A. Pandey, V. Dixit, and A. Weiss, Src-like Adaptor Protein (SLAP) Is a Negative Regulator of T Cell Receptor Signaling, Journal of Experimental Medicine, vol.191, issue.3, pp.463-474, 2000.
DOI : 10.1084/jem.191.3.463

L. Wybenga-groot and C. Mcglade, Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through ??-sheet formation, Cellular Signalling, vol.25, issue.12, pp.2702-2708, 2013.
DOI : 10.1016/j.cellsig.2013.08.040

A. Sirvent, C. Leroy, A. Boureux, V. Simon, and S. Roche, The Src-like adaptor protein regulates PDGF-induced actin dorsal ruffles in a c-Cbl-dependent manner, Oncogene, vol.18, issue.24, pp.3494-3500, 2008.
DOI : 10.1242/jcs.03015

URL : https://hal.archives-ouvertes.fr/hal-00211547

L. Liontos, D. Dissanayake, P. Ohashi, A. Weiss, L. Dragone et al., The Src-Like Adaptor Protein Regulates GM-CSFR Signaling and Monocytic Dendritic Cell Maturation, The Journal of Immunology, vol.186, issue.4, pp.1923-1933, 2011.
DOI : 10.4049/jimmunol.0903292

J. Kazi, S. Agarwal, J. Sun, E. Bracco, and L. Ronnstrand, Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling, Journal of Cell Science, vol.127, issue.3, pp.653-662, 2014.
DOI : 10.1242/jcs.140590

B. Pakuts, C. Debonneville, L. Liontos, M. Loreto, and C. Mcglade, The Src-like Adaptor Protein 2 Regulates Colony-stimulating Factor-1 Receptor Signaling and Down-regulation, Journal of Biological Chemistry, vol.282, issue.25, pp.17953-17963, 2007.
DOI : 10.1074/jbc.M701182200

I. Lebigot, P. Gardellin, L. Lefebvre, H. Beug, J. Ghysdael et al., Up-regulation of SLAP in FLI-1-transformed erythroblasts interferes with EpoR signaling, Blood, vol.102, issue.13, pp.4555-4562, 2003.
DOI : 10.1182/blood-2003-06-2077

R. Klinghoffer, C. Sachsenmaier, J. Cooper, and P. Soriano, Src family kinases are required for integrin but not PDGFR signal transduction, The EMBO Journal, vol.18, issue.9, pp.2459-2471, 1999.
DOI : 10.1093/emboj/18.9.2459

J. Kazi, N. Kabir, and L. Ronnstrand, Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling, Cellular and Molecular Life Sciences, vol.46, issue.13, pp.2535-2544, 2015.
DOI : 10.1007/s00018-015-1882-6

N. Marton, E. Baricza, B. Ersek, E. Buzas, and G. Nagy, The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease, Mediators of Inflammation, vol.127, issue.1, p.952536, 2015.
DOI : 10.4049/jimmunol.1003601

B. Margolis, O. Silvennoinen, F. Comoglio, C. Roonprapunt, E. Skolnik et al., High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains., Proceedings of the National Academy of Sciences, vol.89, issue.19, pp.8894-8898, 1992.
DOI : 10.1073/pnas.89.19.8894

J. Ooi, V. Yajnik, D. Immanuel, M. Gordon, J. Moskow et al., The cloning of Grb10 reveals a new family of SH2 domain proteins, Oncogene, vol.10, issue.8, pp.1621-1630, 1995.

R. Daly, G. Sanderson, P. Janes, and R. Sutherland, Cloning and Characterization of GRB14, a Novel Member of the GRB7 Gene Family, Journal of Biological Chemistry, vol.271, issue.21, pp.12502-12510, 1996.
DOI : 10.1074/jbc.271.21.12502

L. Holt and K. Siddle, Grb10 and Grb14: enigmatic regulators of insulin action ??? and more?, Biochemical Journal, vol.388, issue.2, pp.393-406, 2005.
DOI : 10.1042/BJ20050216

B. Desbuquois, N. Carre, and A. Burnol, Regulation of insulin and type??1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins, FEBS Journal, vol.54, issue.3, pp.794-816, 2013.
DOI : 10.1111/febs.12080

T. Shen and J. Guan, Grb7 in intracellular signaling and its role in cell regulation, Frontiers in Bioscience, vol.9, issue.1-3, pp.192-200, 2004.
DOI : 10.2741/1229

E. Lucas-fernandez, I. Garcia-palmero, and A. Villalobo, Genomic Organization and Control of the Grb7 Gene Family, Current Genomics, vol.9, issue.1, pp.60-68, 2008.
DOI : 10.2174/138920208783884847

B. Cariou, N. Capitaine, L. Marcis, V. Vega, N. Bereziat et al., Increased adipose tissue expression of Grb14 in several models of insulin resistance, The FASEB Journal, vol.18, issue.9, pp.965-967, 2004.
DOI : 10.1096/fj.03-0824fje

R. Kairouz, J. Parmar, R. Lyons, A. Swarbrick, E. Musgrove et al., Hormonal regulation of the Grb14 signal modulator and its role in cell cycle progression of MCF-7 human breast cancer cells, Journal of Cellular Physiology, vol.48, issue.1, pp.85-93, 2005.
DOI : 10.1002/jcp.20199

Y. Yu, S. Yoon, G. Poulogiannis, Q. Yang, X. Ma et al., Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling, Science, vol.332, issue.6035, pp.1322-1326, 2011.
DOI : 10.1126/science.1199484

P. Hsu, S. Kang, J. Rameseder, Y. Zhang, K. Ottina et al., The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling, Science, vol.332, issue.6035, pp.1317-1322, 2011.
DOI : 10.1126/science.1199498

R. Depetris, J. Hu, I. Gimpelevich, L. Holt, R. Daly et al., Structural Basis for Inhibition of the Insulin Receptor by the Adaptor Protein Grb14, Molecular Cell, vol.20, issue.2, pp.325-333, 2005.
DOI : 10.1016/j.molcel.2005.09.001

R. Depetris, J. Wu, and S. Hubbard, Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14, Nature Structural & Molecular Biology, vol.53, issue.8, pp.833-839, 2009.
DOI : 10.1038/nsmb.1642

K. Wick, E. Werner, P. Langlais, F. Ramos, L. Dong et al., Grb10 Inhibits Insulin-stimulated Insulin Receptor Substrate (IRS)-Phosphatidylinositol 3-Kinase/Akt Signaling Pathway by Disrupting the Association of IRS-1/IRS-2 with the Insulin Receptor, Journal of Biological Chemistry, vol.278, issue.10, pp.8460-8467, 2003.
DOI : 10.1074/jbc.M208518200

S. Nouaille, C. Blanquart, V. Zilberfarb, N. Boute, D. Perdereau et al., Interaction with Grb14 results in site-specific regulation of tyrosine phosphorylation of the insulin receptor, EMBO reports, vol.13, issue.5, pp.512-518, 2006.
DOI : 10.1074/jbc.M208518200

A. Morrione, P. Plant, B. Valentinis, O. Staub, S. Kumar et al., mGrb10 Interacts with Nedd4, Journal of Biological Chemistry, vol.274, issue.34, pp.24094-24099, 1999.
DOI : 10.1074/jbc.274.34.24094

A. Vecchione, A. Marchese, P. Henry, D. Rotin, and A. Morrione, The Grb10/Nedd4 Complex Regulates Ligand-Induced Ubiquitination and Stability of the Insulin-Like Growth Factor I Receptor, Molecular and Cellular Biology, vol.23, issue.9, pp.3363-3372, 2003.
DOI : 10.1128/MCB.23.9.3363-3372.2003

G. Monami, V. Emiliozzi, and M. A. Grb10, Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization, Journal of Cellular Physiology, vol.278, issue.2, pp.426-437, 2008.
DOI : 10.1002/jcp.21405

E. Browaeys-poly, C. Blanquart, D. Perdereau, A. Antoine, D. Goenaga et al., Grb14 inhibits FGF receptor signaling through the regulation of PLC?? recruitment and activation, FEBS Letters, vol.138, issue.21, pp.4383-4388, 2010.
DOI : 10.1016/j.febslet.2010.09.048

K. Balogh, S. Asa, L. Zheng, C. Cassol, S. Cheng et al., The insulin resistance Grb14 adaptor protein promotes thyroid cancer ret signaling and progression, Oncogene, vol.7, issue.36, pp.4012-4021, 2012.
DOI : 10.1038/nrc2734

J. Wang, H. Dai, N. Yousaf, M. Moussaif, Y. Deng et al., Grb10, a Positive, Stimulatory Signaling Adapter in Platelet-Derived Growth Factor BB-, Insulin-Like Growth Factor I-, and Insulin-Mediated Mitogenesis, Molecular and Cellular Biology, vol.19, issue.9, pp.6217-6228, 1999.
DOI : 10.1128/MCB.19.9.6217

S. Giorgetti-peraldi, J. Murdaca, J. Mas, and E. Van-obberghen, The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling, Oncogene, vol.20, issue.30, pp.3959-3968, 2001.
DOI : 10.1038/sj.onc.1204520

T. Jahn, P. Seipel, S. Urschel, C. Peschel, and J. Duyster, Role for the Adaptor Protein Grb10 in the Activation of Akt, Molecular and Cellular Biology, vol.22, issue.4, pp.979-991, 2002.
DOI : 10.1128/MCB.22.4.979-991.2002

F. Smith, L. Holt, A. Garfield, M. Charalambous, F. Koumanov et al., Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Molecular and cellular biology, pp.5871-5886, 2007.

L. Wang, B. Balas, C. Christ-roberts, R. Kim, F. Ramos et al., Peripheral Disruption of the Grb10 Gene Enhances Insulin Signaling and Sensitivity In Vivo, Molecular and Cellular Biology, vol.27, issue.18, pp.6497-6505, 2007.
DOI : 10.1128/MCB.00679-07

G. Cooney, R. Lyons, A. Crew, T. Jensen, J. Molero et al., Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice, The EMBO Journal, vol.23, issue.3, pp.582-593, 2004.
DOI : 10.1038/sj.emboj.7600082

M. Charalambous, F. Smith, W. Bennett, T. Crew, F. Mackenzie et al., Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8292-8297, 2003.
DOI : 10.1073/pnas.1532175100

H. Shiura, N. Miyoshi, A. Konishi, N. Wakisaka-saito, R. Suzuki et al., Meg1/Grb10 overexpression causes postnatal growth retardation and insulin resistance via negative modulation of the IGF1R and IR cascades, Biochemical and Biophysical Research Communications, vol.329, issue.3, pp.909-916, 2005.
DOI : 10.1016/j.bbrc.2005.02.047

X. Huang, Y. Li, K. Tanaka, K. Moore, and J. Hayashi, Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase., Proceedings of the National Academy of Sciences, vol.92, issue.25, pp.11618-11622, 1995.
DOI : 10.1073/pnas.92.25.11618

Y. Li, X. He, J. Schembri-king, S. Jakes, and J. Hayashi, Cloning and Characterization of Human Lnk, an Adaptor Protein with Pleckstrin Homology and Src Homology 2 Domains that Can Inhibit T Cell Activation, The Journal of Immunology, vol.164, issue.10, pp.5199-5206, 2000.
DOI : 10.4049/jimmunol.164.10.5199

M. Li, Z. Li, D. Morris, and L. Rui, Identification of SH2B2?? as an Inhibitor for SH2B1- and SH2B2??-Promoted Janus Kinase-2 Activation and Insulin Signaling, Endocrinology, vol.148, issue.4, pp.1615-1621, 2007.
DOI : 10.1210/en.2006-1010

J. Hu and S. Hubbard, Structural Basis for Phosphotyrosine Recognition by the Src Homology-2 Domains of the Adapter Proteins SH2-B and APS, Journal of Molecular Biology, vol.361, issue.1, pp.69-79, 2006.
DOI : 10.1016/j.jmb.2006.05.070

J. Hu, J. Liu, R. Ghirlando, A. Saltiel, and S. Hubbard, Structural Basis for Recruitment of the Adaptor Protein APS to the Activated Insulin Receptor, Molecular Cell, vol.12, issue.6, pp.1379-1389, 2003.
DOI : 10.1016/S1097-2765(03)00487-8

W. Song, D. Ren, W. Li, L. Jiang, K. Cho et al., SH2B Regulation of Growth, Metabolism, and Longevity in Both Insects and Mammals, Cell Metabolism, vol.11, issue.5, pp.427-437, 2010.
DOI : 10.1016/j.cmet.2010.04.002

C. Slack, C. Werz, D. Wieser, A. N. Foley, A. Stocker et al., Regulation of Lifespan, Metabolism, and Stress Responses by the Drosophila SH2B Protein, Lnk, PLoS Genetics, vol.399, issue.8, p.1000881, 2010.
DOI : 10.1371/journal.pgen.1000881.s006

L. Rui, SH2B1 regulation of energy balance, body weight, and glucose metabolism, World Journal of Diabetes, vol.5, issue.4, pp.511-526, 2014.
DOI : 10.4239/wjd.v5.i4.511

L. Velazquez, A. Cheng, H. Fleming, C. Furlonger, S. Vesely et al., -deficient Mice, The Journal of Experimental Medicine, vol.81, issue.12, pp.1599-1611, 2002.
DOI : 10.1038/ng0796-309

URL : https://hal.archives-ouvertes.fr/hal-00807805

F. Baran-marszak, H. Magdoud, C. Desterke, A. Alvarado, C. Roger et al., Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms, Blood, vol.116, issue.26, pp.5961-5971, 2010.
DOI : 10.1182/blood-2009-12-256768

G. Boulday, F. Coulon, C. Fraser, J. Soulillou, and B. Charreau, Transcriptional up-regulation of the signaling regulatory protein LNK in activated endothelial cells1, Transplantation, vol.74, issue.9, pp.1352-1354, 2002.
DOI : 10.1097/00007890-200211150-00026

W. Tong, J. Zhang, and H. Lodish, Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways, Blood, vol.105, issue.12, pp.4604-4612, 2005.
DOI : 10.1182/blood-2004-10-4093

J. Seita, H. Ema, J. Ooehara, S. Yamazaki, Y. Tadokoro et al., Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2349-2354, 2007.
DOI : 10.1073/pnas.0606238104

A. Bersenev, C. Wu, J. Balcerek, and W. Tong, Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. The Journal of clinical investigation, pp.2832-2844, 2008.

S. Oh, E. Simonds, C. Jones, M. Hale, Y. Goltsev et al., Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms, Blood, vol.116, issue.6, pp.988-992, 2010.
DOI : 10.1182/blood-2010-02-270108

J. Jiang, J. Balcerek, K. Rozenova, Y. Cheng, A. Bersenev et al., 14-3-3 regulates the LNK/JAK2 pathway in mouse hematopoietic stem and progenitor cells, Journal of Clinical Investigation, vol.122, issue.6, pp.2079-2091, 2012.
DOI : 10.1172/JCI59719DS1

S. Takaki, H. Morita, Y. Tezuka, and K. Takatsu, Enhanced Hematopoiesis by Hematopoietic Progenitor Cells Lacking Intracellular Adaptor Protein, Lnk, The Journal of Experimental Medicine, vol.85, issue.2, pp.151-160, 2002.
DOI : 10.1016/S1074-7613(00)80018-7

C. Simon, E. Dondi, A. Chaix, P. De-sepulveda, T. Kubiseski et al., Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells, Blood, vol.112, issue.10, pp.4039-4047, 2008.
DOI : 10.1182/blood-2008-05-154849

S. Gueller, S. Hehn, V. Nowak, S. Gery, H. Serve et al., Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling, Experimental Hematology, vol.39, issue.5, pp.591-600, 2011.
DOI : 10.1016/j.exphem.2011.02.001

D. Lin, T. Yin, M. Koren-michowitz, L. Ding, S. Gueller et al., Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3, Blood, vol.120, issue.16, pp.3310-3317, 2012.
DOI : 10.1182/blood-2011-10-388611

S. Gueller, H. Goodridge, B. Niebuhr, H. Xing, M. Koren-michowitz et al., Adaptor protein Lnk inhibits c-Fms-mediated macrophage function, Journal of Leukocyte Biology, vol.88, issue.4, pp.699-706, 2010.
DOI : 10.1189/jlb.0309185

S. Gueller, S. Gery, V. Nowak, L. Liu, H. Serve et al., Adaptor protein Lnk associates with Tyr(568)

T. Wang, H. Chiu, Y. Chang, T. Hsu, I. Chiu et al., The Adaptor Protein SH2B3 (Lnk) Negatively Regulates Neurite Outgrowth of PC12 Cells and Cortical Neurons, PLoS ONE, vol.6, issue.10, p.26433, 2011.
DOI : 10.1371/journal.pone.0026433.s001

S. Gery and H. Koeffler, Role of the adaptor protein LNK in normal and malignant hematopoiesis, Oncogene, vol.37, issue.26, pp.3111-3118, 2013.
DOI : 10.1038/onc.2012.435

J. Devalliere and B. Charreau, The adaptor Lnk (SH2B3): An emerging regulator in vascular cells and a link between immune and inflammatory signaling, Biochemical Pharmacology, vol.82, issue.10, pp.1391-1402, 2011.
DOI : 10.1016/j.bcp.2011.06.023

N. Buza-vidas, J. Antonchuk, H. Qian, R. Mansson, S. Luc et al., Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK, Genes & Development, vol.20, issue.15, pp.2018-2023, 2006.
DOI : 10.1101/gad.385606

W. Tong and H. Lodish, Lnk Inhibits Tpo???mpl Signaling and Tpo-mediated Megakaryocytopoiesis, The Journal of Experimental Medicine, vol.86, issue.5, pp.569-580, 2004.
DOI : 10.1074/jbc.271.38.22976

K. Lee, K. Isham, L. Stringfellow, R. Rothrock, and F. Kenney, Molecular cloning of cDNAs cognate to genes sensitive to hormonal control in rat liver, J Biol Chem, vol.260, issue.30, pp.16433-16438, 1985.

L. Fiorentino, C. Pertica, M. Fiorini, C. Talora, M. Crescenzi et al., Inhibition of ErbB-2 Mitogenic and Transforming Activity by RALT, a Mitogen-Induced Signal Transducer Which Binds to the ErbB-2 Kinase Domain, Molecular and Cellular Biology, vol.20, issue.20, pp.7735-7750, 2000.
DOI : 10.1128/MCB.20.20.7735-7750.2000

P. Hackel, M. Gishizky, and A. Ullrich, Mig-6 Is a Negative Regulator of the Epidermal Growth Factor Receptor Signal, Biological Chemistry, vol.382, issue.12, pp.1649-1662, 2001.
DOI : 10.1515/BC.2001.200

Y. Zhang, V. Woude, and G. , Mig-6, Signal Transduction, Stress Response and Cancer, Cell Cycle, vol.6, issue.5, pp.507-513, 2007.
DOI : 10.4161/cc.6.5.3928

M. Fiorini, C. Ballaro, G. Sala, G. Falcone, S. Alema et al., Expression of RALT, a feedback inhibitor of ErbB receptors, is subjected to an integrated transcriptional and post-translational control, Oncogene, vol.21, issue.42, pp.6530-6539, 2002.
DOI : 10.1038/sj.onc.1205823

S. Park, H. Choi, J. Seo, J. Yoo, J. Jeong et al., DNAJB1 negatively regulates MIG6 to promote epidermal growth factor receptor signaling, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.10, pp.2722-2730, 2015.
DOI : 10.1016/j.bbamcr.2015.07.024

X. Zhang, K. Pickin, R. Bose, N. Jura, P. Cole et al., Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface, Nature, vol.264, issue.7170, pp.741-744, 2007.
DOI : 10.1038/nature05998

T. Maity, A. Venugopalan, I. Linnoila, C. Cultraro, A. Giannakou et al., Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma, Cancer Discovery, vol.5, issue.5, pp.534-549
DOI : 10.1158/2159-8290.CD-14-0750

E. Park, N. Kim, S. Ficarro, Y. Zhang, B. Lee et al., Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6, Nature Structural & Molecular Biology, vol.372, issue.9, pp.703-711
DOI : 10.1107/S0907444909052925

M. Begley, C. Yun, C. Gewinner, J. Asara, J. Johnson et al., EGFreceptor specificity for phosphotyrosine-primed substrates provides signal integration with Src, Nature structural & molecular biology, p.3117, 2015.

Y. Frosi, S. Anastasi, C. Ballaro, G. Varsano, L. Castellani et al., A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation, The Journal of Cell Biology, vol.267, issue.3, pp.557-571, 2010.
DOI : 10.1083/jcb.201002032.dv

H. Ying, H. Zheng, K. Scott, R. Wiedemeyer, H. Yan et al., Mig-6 controls EGFR trafficking and suppresses gliomagenesis, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.6912-6917, 2010.
DOI : 10.1073/pnas.0914930107

G. Pante, J. Thompson, F. Lamballe, T. Iwata, I. Ferby et al., Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth, The Journal of Cell Biology, vol.87, issue.2, pp.337-348, 2005.
DOI : 10.1073/pnas.0505171102

URL : https://hal.archives-ouvertes.fr/hal-00118502

S. Hopkins, E. Linderoth, O. Hantschel, P. Suarez-henriques, G. Pilia et al., Mig6 Is a Sensor of EGF Receptor Inactivation that Directly Activates c-Abl to Induce Apoptosis during Epithelial Homeostasis, Developmental Cell, vol.23, issue.3, pp.547-559, 2012.
DOI : 10.1016/j.devcel.2012.08.001

C. Ballaro, S. Ceccarelli, C. Tiveron, L. Tatangelo, A. Salvatore et al., Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype, EMBO reports, vol.5, issue.8, pp.755-761, 2005.
DOI : 10.1016/S1534-5807(03)00161-8

S. Anastasi, G. Sala, C. Huiping, E. Caprini, G. Russo et al., Loss of RALT/MIG-6 expression in ERBB2-amplified breast carcinomas enhances ErbB-2 oncogenic potency and favors resistance to Herceptin, Oncogene, vol.2, issue.28, pp.4540-4548, 2005.
DOI : 10.1038/sj.onc.1208658

S. Anastasi, L. Fiorentino, M. Fiorini, R. Fraioli, G. Sala et al., Feedback inhibition by RALT controls signal output by the ErbB network, Oncogene, vol.22, issue.27, pp.4221-4234, 2003.
DOI : 10.1038/sj.onc.1206516

D. Xu, A. Makkinje, and J. Kyriakis, Gene 33 Is an Endogenous Inhibitor of Epidermal Growth Factor (EGF) Receptor Signaling and Mediates Dexamethasone-induced Suppression of EGF Function, Journal of Biological Chemistry, vol.280, issue.4, pp.2924-2933, 2005.
DOI : 10.1074/jbc.M408907200

M. Reschke, I. Ferby, E. Stepniak, N. Seitzer, D. Horst et al., Mitogen-inducible gene-6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma, Hepatology, vol.27, issue.4, pp.1383-1390, 2010.
DOI : 10.1002/hep.23428

I. Ferby, M. Reschke, O. Kudlacek, P. Knyazev, G. Pante et al., Mig6 is a negative regulator of EGF receptor???mediated skin morphogenesis and tumor formation, Nature Medicine, vol.63, issue.5, pp.568-573, 2006.
DOI : 10.1038/nm1401

Y. Zhang, B. Staal, Y. Su, P. Swiatek, P. Zhao et al., Evidence that MIG-6 is a tumor-suppressor gene, Oncogene, vol.64, issue.2, pp.269-276, 2007.
DOI : 10.1038/sj.onc.1209790

K. Inagaki-ohara, T. Kondo, M. Ito, and A. Yoshimura, SOCS, inflammation, and cancer, JAK-STAT, vol.1, issue.3, p.24053, 2013.
DOI : 10.1016/j.ejca.2011.12.009

R. Rottapel, S. Ilangumaran, C. Neale, L. Rose, J. Ho et al., The tumor suppressor activity of SOCS-1, Oncogene, vol.21, issue.28, pp.4351-4362, 2002.
DOI : 10.1038/sj.onc.1205537

M. Weniger, I. Melzner, C. Menz, S. Wegener, A. Bucur et al., Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation, Oncogene, vol.28, issue.18, pp.2679-2684, 2006.
DOI : 10.1038/sj.onc.1209151

A. Mottok, C. Renne, K. Willenbrock, M. Hansmann, and A. Brauninger, Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6, Blood, vol.110, issue.9, pp.3387-3390, 2007.
DOI : 10.1182/blood-2007-03-082511

A. Mottok, C. Renne, M. Seifert, E. Oppermann, W. Bechstein et al., Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities, Blood, vol.114, issue.20, pp.4503-4506, 2009.
DOI : 10.1182/blood-2009-06-225839

I. Melzner, A. Bucur, S. Bruderlein, K. Dorsch, C. Hasel et al., Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line, Blood, vol.105, issue.6, pp.2535-2542, 2005.
DOI : 10.1182/blood-2004-09-3701

C. Chen, W. Tsay, J. Tang, H. Shen, S. Lin et al., SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia, Genes, Chromosomes and Cancer, vol.28, issue.3, pp.300-305, 2003.
DOI : 10.1002/gcc.10222

D. Watanabe, S. Ezoe, M. Fujimoto, A. Kimura, Y. Saito et al., Suppressor of cytokine signalling-1 gene silencing in acute myeloid leukaemia and human haematopoietic cell lines, British Journal of Haematology, vol.164, issue.5, pp.726-735, 2004.
DOI : 10.1073/pnas.93.17.9148

T. Liu, S. Lin, J. Chang, M. Yang, S. Hung et al., gene in chronic myeloid leukaemia, British Journal of Haematology, vol.14, issue.4, pp.654-661, 2003.
DOI : 10.1046/j.1365-2141.2003.04660.x

E. Jost, O. Do, E. Dahl, C. Maintz, P. Jousten et al., Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders, Leukemia, vol.10, issue.3, pp.505-510, 2007.
DOI : 10.1038/sj.leu.2404513

R. Sobti, N. Singh, S. Hussain, V. Suri, R. Nijhawan et al., Aberrant promoter methylation and loss of Suppressor of Cytokine Signalling-1 gene expression in the development of uterine cervical carcinogenesis, Cellular Oncology, vol.130, issue.6, pp.533-543, 2011.
DOI : 10.1007/s13402-011-0056-2

S. Hussain, N. Singh, I. Salam, K. Bandil, M. Yuvaraj et al., Methylation-mediated gene silencing of suppressor of cytokine signaling-1 (SOCS-1) gene in esophageal squamous cell carcinoma patients of Kashmir valley, Journal of Receptors and Signal Transduction, vol.115, issue.3, pp.147-156, 2011.
DOI : 10.1016/S0168-8278(02)00064-8

I. Tischoff, U. Hengge, M. Vieth, C. Ell, M. Stolte et al., Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett's adenocarcinoma, Gut, vol.56, issue.8, pp.1047-1053, 2007.
DOI : 10.1136/gut.2006.111633

K. Sutherland, G. Lindeman, D. Choong, S. Wittlin, L. Brentzell et al., Differential hypermethylation of SOCS genes in ovarian and breast carcinomas, Oncogene, vol.23, issue.46, pp.7726-7733, 2004.
DOI : 10.1038/sj.onc.1207787

H. Nagai, Y. Kim, N. Konishi, M. Baba, T. Kubota et al., Combined hypermethylation and chromosome loss associated with inactivation of SSI-1/SOCS-1/JAB gene in human hepatocellular carcinomas, Cancer Letters, vol.186, issue.1, pp.59-65, 2002.
DOI : 10.1016/S0304-3835(02)00244-6

H. Zhou, R. Miki, M. Eeva, F. Fike, D. Seligson et al., Reciprocal Regulation of SOCS 1 and SOCS3 Enhances Resistance to Ionizing Radiation in Glioblastoma Multiforme, Clinical Cancer Research, vol.13, issue.8, pp.2344-2353, 2007.
DOI : 10.1158/1078-0432.CCR-06-2303

W. Sasi, W. Jiang, A. Sharma, and K. Mokbel, Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer, BMC Cancer, vol.103, issue.1, p.178, 2010.
DOI : 10.1182/blood-2003-09-3126

M. David, C. Naudin, M. Letourneur, M. Polrot, J. Renoir et al., Suppressor of cytokine signaling 1 modulates invasion and metastatic potential of colorectal cancer cells, Molecular Oncology, vol.96, issue.Pt 8, pp.942-955, 2014.
DOI : 10.1016/j.molonc.2014.03.014

T. Hanada, T. Kobayashi, T. Chinen, K. Saeki, H. Takaki et al., IFN??-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice, The Journal of Experimental Medicine, vol.60, issue.6, pp.1391-1397, 2006.
DOI : 10.1136/jcp.54.7.526

Y. Suessmuth, J. Elliott, M. Percy, M. Inami, H. Attal et al., ) cannot regulate erythropoietin responses, British Journal of Haematology, vol.111, issue.4
DOI : 10.1111/j.1365-2141.2009.07860.x

Y. Niwa, H. Kanda, Y. Shikauchi, A. Saiura, K. Matsubara et al., Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma, Oncogene, vol.14, issue.42, pp.6406-6417, 2005.
DOI : 10.1053/jhep.2003.50318

C. Lindemann, O. Hackmann, S. Delic, N. Schmidt, G. Reifenberger et al., SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation, Acta Neuropathologica, vol.13, issue.Pt 16, pp.241-251, 2011.
DOI : 10.1007/s00401-011-0832-0

H. Isomoto, J. Mott, S. Kobayashi, N. Werneburg, S. Bronk et al., Sustained IL-6/STAT-3 Signaling in Cholangiocarcinoma Cells Due to SOCS-3 Epigenetic Silencing, Gastroenterology, vol.132, issue.1, pp.384-396, 2007.
DOI : 10.1053/j.gastro.2006.10.037

T. Nakagawa, S. Iida, T. Osanai, H. Uetake, T. Aruga et al., Decreased expression of SOCS-3 mRNA in breast cancer with lymph node metastasis, Oncology Reports, vol.19, issue.1, pp.33-39, 2008.
DOI : 10.3892/or.19.1.33

L. Zhang, J. Li, L. Li, J. Zhang, X. Wang et al., IL-23 selectively promotes the metastasis of colorectal carcinoma cells with impaired Socs3 expression via the STAT5 pathway, Carcinogenesis, vol.35, issue.6, pp.1330-1340, 2014.
DOI : 10.1093/carcin/bgu017

R. Rigby, J. Simmons, C. Greenhalgh, W. Alexander, and P. Lund, Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon, Oncogene, vol.4, issue.33, pp.4833-4841, 2007.
DOI : 10.1038/sj.onc.1210286

Z. Li, D. Metze, D. Nashan, C. Muller-tidow, H. Serve et al., Expression of SOCS-1, Suppressor of Cytokine Signalling-1, in Human Melanoma, Journal of Investigative Dermatology, vol.123, issue.4, pp.737-745, 2004.
DOI : 10.1111/j.0022-202X.2004.23408.x

S. Gery, S. Gueller, V. Nowak, J. Sohn, W. Hofmann et al., Expression of the adaptor protein Lnk in leukemia cells, Experimental Hematology, vol.37, issue.5, pp.585-592, 2009.
DOI : 10.1016/j.exphem.2009.01.009

S. Gery, Q. Cao, S. Gueller, H. Xing, A. Tefferi et al., Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F, Journal of Leukocyte Biology, vol.85, issue.6, pp.957-965, 2009.
DOI : 10.1189/jlb.0908575

L. Ding, Q. Sun, D. Lin, W. Chien, N. Hattori et al., LNK (SH2B3): paradoxical effects in ovarian cancer, SH2B3): paradoxical effects in ovarian cancer, pp.1463-1474, 2015.
DOI : 10.1038/onc.2014.34

S. Amatschek, U. Koenig, H. Auer, P. Steinlein, M. Pacher et al., Tissue-Wide Expression Profiling Using cDNA Subtraction and Microarrays to Identify Tumor-Specific Genes, Cancer Research, vol.64, issue.3, pp.844-856, 2004.
DOI : 10.1158/0008-5472.CAN-03-2361

Z. Li, L. Qu, H. Zhong, K. Xu, X. Qiu et al., Low expression of Mig-6 is associated with poor survival outcome in NSCLC and inhibits cell apoptosis via ERKmediated upregulation of Bcl-2, Oncol Rep, vol.31, issue.4, pp.1707-1714, 2014.

C. Duncan, P. Killela, C. Payne, B. Lampson, W. Chen et al., Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes, Oncotarget, vol.1, issue.4, pp.265-277, 2010.
DOI : 10.18632/oncotarget.137

C. Lin, J. Du, W. Shen, E. Whang, D. Donner et al., Mitogen-Inducible Gene-6 Is a Multifunctional Adaptor Protein with Tumor Suppressor-Like Activity in Papillary Thyroid Cancer, The Journal of Clinical Endocrinology & Metabolism, vol.96, issue.3, pp.554-565, 2011.
DOI : 10.1210/jc.2010-1800

L. Adam, M. Zhong, W. Choi, W. Qi, M. Nicoloso et al., miR-200 Expression Regulates Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Reverses Resistance to Epidermal Growth Factor Receptor Therapy, Clinical Cancer Research, vol.15, issue.16, pp.5060-5072, 2009.
DOI : 10.1158/1078-0432.CCR-08-2245

X. Chang, E. Izumchenko, L. Solis, M. Kim, A. Chatterjee et al., The Relative Expression of Mig6 and EGFR Is Associated with Resistance to EGFR Kinase Inhibitors, PLoS ONE, vol.92, issue.7, p.68966, 2013.
DOI : 10.1371/journal.pone.0068966.s004

J. Roman-gomez, A. Jimenez-velasco, J. Castillejo, F. Cervantes, M. Barrios et al., The suppressor of cytokine signaling-1 is constitutively expressed in chronic myeloid leukemia and correlates with poor cytogenetic response to interferon-alpha, Haematologica, vol.89, issue.1, pp.42-48, 2004.

O. Hatirnaz, U. Ure, C. Ar, C. Akyerli, T. Soysal et al., TheSOCS-1 gene methylation in chronic myeloid leukemia patients, American Journal of Hematology, vol.123, issue.8, pp.729-730, 2007.
DOI : 10.1002/ajh.20886

I. Sakai, K. Takeuchi, H. Yamauchi, H. Narumi, and S. Fujita, Constitutive expression of SOCS3 confers resistance to IFN-alpha in chronic myelogenous leukemia cells, Blood, vol.100, issue.8, pp.2926-2931, 2002.
DOI : 10.1182/blood-2002-01-0073

K. Zitzmann, S. Brand, D. Toni, E. Baehs, S. Goke et al., SOCS1 Silencing Enhances Antitumor Activity of Type I IFNs by Regulating Apoptosis in Neuroendocrine Tumor Cells, Cancer Research, vol.67, issue.10, pp.5025-5032, 2007.
DOI : 10.1158/0008-5472.CAN-06-2575

G. Lesinski, J. Zimmerer, M. Kreiner, J. Trefry, M. Bill et al., Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells, BMC Cancer, vol.22, issue.12, p.142, 2010.
DOI : 10.1038/nbt1035

J. Zhang, H. Li, J. Yu, S. Wang, and X. Ren, Role of SOCS1 in tumor progression and therapeutic application, International Journal of Cancer, vol.69, issue.9
DOI : 10.1002/ijc.27318

H. Quentmeier, R. Geffers, E. Jost, R. Macleod, S. Nagel et al., SOCS2: inhibitor of JAK2V617F-mediated signal transduction, Leukemia, vol.26, issue.12, pp.2169-2175, 2008.
DOI : 10.1038/leu.2008.226

A. Etienne, N. Carbuccia, A. J. Bekhouche, I. , R. V. Sohn et al., Rearrangements involving 12q in myeloproliferative disorders: possible role of HMGA2 and SOCS2 genes, Cancer Genetics and Cytogenetics, vol.176, issue.1, pp.80-88, 2007.
DOI : 10.1016/j.cancergencyto.2007.03.009

X. Qiu, J. Zheng, X. Guo, X. Gao, H. Liu et al., Reduced expression of SOCS2 and SOCS6 in hepatocellular carcinoma correlates with aggressive tumor progression and poor prognosis, Molecular and Cellular Biochemistry, vol.89, issue.1-2, pp.99-106, 2013.
DOI : 10.1007/s11010-013-1599-5

J. Zhu, Q. Dai, Z. Han, H. He, R. Mo et al., Expression of SOCSs in human prostate cancer and their association in prognosis, Molecular and Cellular Biochemistry, vol.7, issue.1-2, pp.51-59, 2013.
DOI : 10.1007/s11010-013-1687-6

D. Iglesias-gato, Y. Chuan, P. Wikstrom, S. Augsten, N. Jiang et al., SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer, Carcinogenesis, vol.35, issue.1, pp.24-33, 2014.
DOI : 10.1093/carcin/bgt304

F. Bogazzi, F. Ultimieri, F. Raggi, D. Russo, A. Costa et al., Changes in the expression of suppressor of cytokine signalling (SOCS) 2 in the colonic mucosa of acromegalic patients are associated with hyperplastic polyps, Clinical Endocrinology, vol.25, issue.6, pp.898-906, 2009.
DOI : 10.1111/j.1365-2265.2008.03431.x

C. Zheng, L. Li, M. Haak, B. Brors, O. Frank et al., Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis, Leukemia, vol.278, issue.6, pp.1028-1034, 2006.
DOI : 10.1038/sj.leu.2404227

B. Schultheis, M. Carapeti-marootian, A. Hochhaus, A. Weisser, J. Goldman et al., Overexpression of SOCS-2 in advanced stages of chronic myeloid leukemia: possible inadequacy of a negative feedback mechanism, Blood, vol.99, issue.5, pp.1766-1775, 2002.
DOI : 10.1182/blood.V99.5.1766

J. Kazi and L. Ronnstrand, Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling, Molecular Oncology, vol.286, issue.3, pp.693-703, 2013.
DOI : 10.1016/j.molonc.2013.02.020

N. Fourouclas, J. Li, D. Gilby, P. Campbell, P. Beer et al., Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders, Haematologica, vol.93, issue.11, pp.1635-1644, 2008.
DOI : 10.3324/haematol.13043

B. He, L. You, K. Uematsu, K. Zang, Z. Xu et al., SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer, Proceedings of the National Academy of Sciences, vol.100, issue.24, pp.14133-14138, 2003.
DOI : 10.1073/pnas.2232790100

F. Pierconti, M. Martini, F. Pinto, T. Cenci, S. Capodimonti et al., Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior, The Prostate, vol.10, issue.3, pp.318-325, 2011.
DOI : 10.1002/pros.21245

A. Weber, U. Hengge, W. Bardenheuer, I. Tischoff, F. Sommerer et al., SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition, Oncogene, vol.163, issue.44, pp.6699-6708, 2005.
DOI : 10.1038/ng0501-29

D. Kobayashi, S. Nomoto, Y. Kodera, M. Fujiwara, M. Koike et al., Suppressor of Cytokine Signaling 4 Detected as a Novel Gastric Cancer Suppressor Gene using Double Combination Array Analysis, World Journal of Surgery, vol.15, issue.2, pp.362-372, 2012.
DOI : 10.1007/s00268-011-1358-2

S. Yoon, Y. Yi, S. Kim, J. Kim, W. Park et al., SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues, Tumor Biology, vol.71, issue.Pt 16, pp.215-221, 2012.
DOI : 10.1007/s13277-011-0264-4

R. Lai, Y. Hsiao, M. Wang, H. Lin, C. Wu et al., SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation, Cancer Letters, vol.288, issue.1, pp.75-85, 2010.
DOI : 10.1016/j.canlet.2009.06.025

I. Storojeva, J. Boulay, P. Ballabeni, M. Buess, L. Terracciano et al., Prognostic and Predictive Relevance of DNAM-1, SOCS6 and CADH-7 Genes on Chromosome 18q in Colorectal Cancer, Oncology, vol.68, issue.2-3, pp.2-3246, 2005.
DOI : 10.1159/000086781

K. Sriram, J. Larsen, S. Francis, S. Wright, C. Clarke et al., Array-Comparative Genomic Hybridization Reveals Loss of SOCS6 Is Associated with Poor Prognosis in Primary Lung Squamous Cell Carcinoma, PLoS ONE, vol.66, issue.2, p.30398, 2012.
DOI : 10.1371/journal.pone.0030398.s007