C. Aguerrebere, P. Sprechmann, P. Musé, and R. Ferrando, A-contrario localization of epileptogenic zones in SPECT images, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.570-573, 2009.
DOI : 10.1109/ISBI.2009.5193111

D. C. Alsop, J. Detre, X. Golay, M. Günther, J. Hendrikse et al., Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia, 2014.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

S. Aslan and H. Lu, On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow, Magnetic Resonance Imaging, vol.28, issue.7, pp.928-935, 2010.
DOI : 10.1016/j.mri.2010.03.037

L. Biagi, A. Abbruzzese, M. C. Bianchi, D. C. Alsop, D. Guerra et al., Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling, Journal of Magnetic Resonance Imaging, vol.102, issue.4, pp.696-702, 2007.
DOI : 10.1002/jmri.20839

B. Galazzo, I. Storti, S. F. Del-felice, A. Pizzini, F. B. Arcaro et al., Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients, PLoS ONE, vol.10, 2015.

R. B. Buxton, L. R. Frank, E. C. Wong, B. Siewert, S. Warach et al., A general kinetic model for quantitative perfusion imaging with arterial spin labeling, Magnetic Resonance in Medicine, vol.37, issue.3, pp.383-396, 1998.
DOI : 10.1002/mrm.1910400308

J. Chalela, D. C. Alsop, J. Gonzalez-atavales, J. Maldjian, S. Kasner et al., Magnetic Resonance Perfusion Imaging in Acute Ischemic Stroke Using Continuous Arterial Spin Labeling, Stroke, vol.31, issue.3, pp.680-687, 2000.
DOI : 10.1161/01.STR.31.3.680

S. Chawla, S. Wang, R. C. Wolf, J. H. Woo, J. Wang et al., Arterial Spin-Labeling and MR Spectroscopy in the Differentiation of Gliomas, American Journal of Neuroradiology, vol.28, issue.9, pp.1683-1689, 2007.
DOI : 10.3174/ajnr.A0673

T. Y. Chen, L. Chiu, T. C. Wu, T. C. Wu, C. J. Lin et al., Arterial spin-labeling in routine clinical practice: a preliminary experience of 200 cases and correlation with MRI and clinical findings, Clinical Imaging, vol.36, issue.4, pp.345-352, 2012.
DOI : 10.1016/j.clinimag.2011.11.003

J. R. Chumbley and K. J. Friston, False discovery rate revisited: FDR and topological inference using Gaussian random fields, NeuroImage, vol.44, issue.1, pp.62-70, 2009.
DOI : 10.1016/j.neuroimage.2008.05.021

O. Colliot, N. Bernasconi, T. Mansi, V. Naessens, A. Bernasconi et al., Segmentation of focal cortical dysplasia lesions on MRI using level set evolution, NeuroImage, vol.32, issue.4, pp.1621-1651, 2006.
DOI : 10.1016/j.neuroimage.2006.04.225

URL : https://hal.archives-ouvertes.fr/inria-00614998

J. Crinion, J. Ashburner, A. Leff, M. Brett, C. Price et al., Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses, NeuroImage, vol.37, issue.3, pp.866-875, 2007.
DOI : 10.1016/j.neuroimage.2007.04.065

A. Desolneux, L. Moisan, and J. Morel, A grouping principle and four applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.4, pp.508-513, 2003.
DOI : 10.1109/TPAMI.2003.1190576

URL : https://hal.archives-ouvertes.fr/hal-00170783

J. Detre and J. Leigh, Perfusion imaging, Magnetic Resonance in Medicine, vol.3, issue.1, pp.37-45, 1992.
DOI : 10.1002/mrm.1910230106

J. C. Ferré, J. Petr, E. Bannier, C. Barillot, and J. Y. Gauvrit, Improving quality of arterial spin labeling MR imaging at 3 tesla with a 32-channel coil and parallel imaging, Journal of Magnetic Resonance Imaging, vol.28, issue.5, pp.1233-1239, 2012.
DOI : 10.1002/jmri.23586

S. Huck, H. U. Kerl, M. Zghloul, C. Groden, and I. Nölte, Arterial Spin Labeling at 3.0??Tesla in Subacute Ischemia, Clinical Neuroradiology, vol.49, issue.Suppl 1, pp.29-37, 2012.
DOI : 10.1007/s00062-011-0126-x

S. J. Kiebel, J. B. Poline, K. J. Friston, . P. Holmes, and K. J. Worsley, Robust Smoothness Estimation in Statistical Parametric Maps Using Standardized Residuals from the General Linear Model, NeuroImage, vol.10, issue.6, pp.756-66, 1999.
DOI : 10.1006/nimg.1999.0508

S. Klöppel, A. Abdulkadir, C. R. Jack, N. Koutsouleris, M. Miranda et al., Diagnostic neuroimaging across diseases, NeuroImage, vol.61, issue.2, pp.457-63, 2012.
DOI : 10.1016/j.neuroimage.2011.11.002

N. Kriegeskorte and P. Bandettini, Analyzing for information, not activation, to exploit high-resolution fMRI, NeuroImage, vol.38, issue.4, pp.649-62, 2007.
DOI : 10.1016/j.neuroimage.2007.02.022

N. Kriegeskorte and P. Bandettini, Combining the tools: Activation- and information-based fMRI analysis, NeuroImage, vol.38, issue.4, pp.666-674, 2007.
DOI : 10.1016/j.neuroimage.2007.06.030

N. Kriegeskorte, R. Goebel, and P. Bandettini, Information-based functional brain mapping, Proceedings of the National Academy of Sciences, vol.103, issue.10, pp.3863-3871, 2006.
DOI : 10.1073/pnas.0600244103

C. Maumet, P. Maurel, J. C. Ferré, and C. Barillot, A contrario detection of focal brain perfusion abnormalities based on an ASL template, Proceedings of the IEEE 9th International Symposium on Biomedical Imaging, pp.1176-1179, 2012.

C. Maumet, P. Maurel, J. C. Ferré, and C. Barillot, A Comprehensive Framework for the Detection of Individual Brain Perfusion Abnormalities Using Arterial Spin Labeling, Proceedings of the 15th International Conference on Medical Image Computing and Computer Assisted Intervention, pp.542-549, 2012.
DOI : 10.1007/978-3-642-33454-2_67

URL : https://hal.archives-ouvertes.fr/inserm-00720593

C. Maumet, P. Maurel, J. C. Ferré, B. Carsin, and C. Barillot, Patient-specific detection of perfusion abnormalities combining within-subject and between-subject variances in Arterial Spin Labeling, NeuroImage, vol.81, pp.121-130, 2013.
DOI : 10.1016/j.neuroimage.2013.04.079

URL : https://hal.archives-ouvertes.fr/inserm-00816852

J. Mazziotta, A. Toga, and A. Evans, A Four-Dimensional Probabilistic Atlas of the Human Brain, Journal of the American Medical Informatics Association, vol.8, issue.5, pp.401-430, 2001.
DOI : 10.1136/jamia.2001.0080401

M. Miranda, J. Hardoon, D. R. Hahn, T. Marquand, A. F. Williams et al., Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine, NeuroImage, vol.58, issue.3, pp.793-804, 2011.
DOI : 10.1016/j.neuroimage.2011.06.042

A. Myaskouvskey, Y. Gousseau, and M. Lindenbaum, Beyond Independence: An Extension of the A Contrario Decision Procedure, International Journal of Computer Vision, vol.73, issue.2, 2012.
DOI : 10.1007/s11263-012-0543-6

T. Noguchi, T. Yoshiura, A. Hiwatashi, O. Togao, K. Yamashita et al., Perfusion Imaging of Brain Tumors Using Arterial Spin-Labeling: Correlation with Histopathologic Vascular Density, American Journal of Neuroradiology, vol.29, issue.4, pp.688-93, 2008.
DOI : 10.3174/ajnr.A0903

L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis, Magnetic Resonance in Medicine, vol.20, issue.5, pp.715-725, 1996.
DOI : 10.1002/mrm.1910360510

Y. Paloyelis, O. M. Doyle, F. O. Zelaya, S. Maltezos, S. C. Williams et al., A Spatiotemporal Profile of In Vivo Cerebral Blood Flow Changes Following Intranasal Oxytocin in Humans, Biological Psychiatry, vol.79, issue.8, pp.1-13, 2014.
DOI : 10.1016/j.biopsych.2014.10.005

N. Pendse, M. Wissmeyer, S. Altrichter, M. Vargas, J. Delavelle et al., Interictal arterial spin-labeling MRI perfusion in intractable epilepsy, Journal of Neuroradiology, vol.37, issue.1, pp.60-63, 2010.
DOI : 10.1016/j.neurad.2009.05.006

J. Petr, J. C. Ferré, H. Raoult, E. Bannier, J. Y. Gauvrit et al., Template-based approach for detecting motor task activation-related hyperperfusion in pulsed ASL data, Human Brain Mapping, vol.120, issue.4, 2013.
DOI : 10.1002/hbm.22243

URL : https://hal.archives-ouvertes.fr/inserm-00800899

A. Pinkham, J. Loughead, K. Ruparel, W. C. Wu, E. Overton et al., Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI, Psychiatry Research: Neuroimaging, vol.194, issue.1, pp.64-72, 2011.
DOI : 10.1016/j.pscychresns.2011.06.013

R. A. Poldrack, J. Mumford, and T. Nichols, Handbook of functional MRI data analysis, 2011.
DOI : 10.1017/CBO9780511895029

C. E. Rasmussen and C. K. Williams, Covariance Functions, in: Gaussian Processes for Machine Learning, 2006.

F. Rousseau, S. Faisan, F. Heitz, J. P. Armspach, Y. Chevalier et al., An A Contrario Approach for Change Detection in 3D Multimodal Images: Application to Multiple Sclerosis in MRI, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2069-2072, 2007.
DOI : 10.1109/IEMBS.2007.4352728

C. Scarpazza, G. Sartori, M. S. De-simone, and . Mechelli, When the single matters more than the group: Very high false positive rates in single case Voxel Based Morphometry, NeuroImage, vol.70, pp.175-88, 2013.
DOI : 10.1016/j.neuroimage.2012.12.045

P. Skudlarski, R. T. Constable, and J. C. Gore, ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects, NeuroImage, vol.9, issue.3, pp.311-329, 1999.
DOI : 10.1006/nimg.1999.0402

T. Sugahara, Y. Korogi, S. Tomiguchi, Y. Shigematsu, I. Ikushima et al., Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrastenhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue, American Journal of Neuroradiology, vol.21, pp.901-909, 2000.

M. Villien, E. Chipon, I. Troprès, J. Bouvier, S. Cantin et al., Per-subject characterization of bolus width in pulsed arterial spin labeling using bolus turbo sampling. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, Society of Magnetic Resonance in Medicine, vol.000, pp.1-6, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00861241

R. Viviani, P. Beschoner, K. Ehrhard, B. Schmitz, and J. Thöne, Non-normality and transformations of random fields, with an application to voxel-based morphometry, NeuroImage, vol.35, issue.1, pp.121-151, 2007.
DOI : 10.1016/j.neuroimage.2006.11.037

J. Wang, G. K. Aguirre, D. Y. Kimberg, and J. Detre, Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T, NeuroImage, vol.19, issue.4, pp.1449-1462, 2003.
DOI : 10.1016/S1053-8119(03)00255-6

J. Wang, D. J. Licht, G. H. Jahng, C. S. Liu, J. T. Rubin et al., Pediatric perfusion imaging using pulsed arterial spin labeling, Journal of Magnetic Resonance Imaging, vol.8, issue.4, pp.404-417, 2003.
DOI : 10.1002/jmri.10372

Y. Wang, A. J. Saykin, J. Pfeuffer, C. Lin, K. M. Mosier et al., Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T, NeuroImage, vol.54, issue.2, pp.1188-1195, 2011.
DOI : 10.1016/j.neuroimage.2010.08.043

C. Warmuth, M. Günther, and C. Zimmer, Quantification of Blood Flow in Brain Tumors: Comparison of Arterial Spin Labeling and Dynamic Susceptibility-weighted Contrast-enhanced MR Imaging, Radiology, vol.228, issue.2, pp.523-532, 2003.
DOI : 10.1148/radiol.2282020409

M. A. Weber, S. Zoubaa, M. Schlieter, E. Jüttler, H. B. Huttner et al., Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors, Neurology, vol.66, issue.12, pp.1899-1906, 2006.
DOI : 10.1212/01.wnl.0000219767.49705.9c

H. M. Wheeler, M. Mlynash, M. Inoue, A. Tipirneni, J. Liggins et al., Early Diffusion-Weighted Imaging and Perfusion- Weighted Imaging Lesion Volumes Forecast Final Infarct Size in DEFUSE 2. Stroke, pp.681-686, 2013.

A. M. Winkler, G. R. Ridgway, M. A. Webster, S. M. Smith, and T. E. Nichols, Permutation inference for the general linear model, NeuroImage, vol.92, pp.381-397, 2014.
DOI : 10.1016/j.neuroimage.2014.01.060

M. Wintermark, M. Sesay, E. Barbier, K. Borbély, W. P. Dillon et al., Comparative Overview of Brain Perfusion Imaging Techniques, Stroke, vol.36, issue.9, pp.83-99, 2005.
DOI : 10.1161/01.STR.0000177884.72657.8b

URL : https://hal.archives-ouvertes.fr/inserm-00410400

E. C. Wong, R. B. Buxton, and L. R. Frank, Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II), Magnetic Resonance in Medicine, vol.6, issue.5, pp.702-708, 1998.
DOI : 10.1002/mrm.1910390506

K. J. Worsley, S. Marrett, P. Neelin, . C. Vandal, K. J. Friston et al., A unified statistical approach for determining significant signals in images of cerebral activation, Human Brain Mapping, vol.4, issue.1, pp.58-73, 1996.
DOI : 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.3.CO;2-L

G. Zaharchuk, R. Bammer, M. Straka, A. Shankaranarayan, D. C. Alsop et al., Arterial Spin-Label Imaging in Patients with Normal Bolus Perfusion-weighted MR Imaging Findings: Pilot Identification of the Borderzone Sign, Radiology, vol.252, issue.3, pp.797-807, 2009.
DOI : 10.1148/radiol.2523082018

G. Zaharchuk, I. S. Mogy, N. J. Fischbein, and G. W. Albers, Comparison of Arterial Spin Labeling and Bolus Perfusion-Weighted Imaging for Detecting Mismatch in Acute Stroke, Stroke, vol.43, issue.7, pp.1843-1848, 2012.
DOI : 10.1161/STROKEAHA.111.639773

H. Zhang, T. E. Nichols, and T. D. Johnson, Cluster mass inference via random field theory, NeuroImage, vol.44, issue.1, pp.51-61, 2009.
DOI : 10.1016/j.neuroimage.2008.08.017