A. Suwanto and S. Kaplan, Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes., Journal of Bacteriology, vol.171, issue.11, pp.5850-5859, 1989.
DOI : 10.1128/jb.171.11.5850-5859.1989

S. Casjens, THE DIVERSE AND DYNAMIC STRUCTURE OF BACTERIAL GENOMES, Annual Review of Genetics, vol.32, issue.1, pp.339-377, 1998.
DOI : 10.1146/annurev.genet.32.1.339

E. Egan, M. Fogel, and M. Waldor, MicroReview: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes, Molecular Microbiology, vol.175, issue.Pt 1, pp.1129-1138, 2005.
DOI : 10.1111/j.1365-2958.2005.04622.x

J. Heidelberg, J. Eisen, W. Nelson, R. Clayton, and M. Gwinn, DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature, vol.406, pp.477-483, 2000.

F. Reen, S. Almagro-moreno, D. Ussery, and E. Boyd, The genomic code: inferring Vibrionaceae niche specialization, Nature Reviews Microbiology, vol.65, issue.9, pp.697-704, 2006.
DOI : 10.1038/nrmicro1476

R. Dryselius, K. Kurokawa, and T. Iida, Vibrionaceae, a versatile bacterial family with evolutionarily conserved variability, Research in Microbiology, vol.158, issue.6, pp.479-486, 2007.
DOI : 10.1016/j.resmic.2007.04.007

L. Roux, F. Zouine, M. Chakroun, N. Binesse, J. Saulnier et al., : an abundant planctonic marine species with a large genotypic diversity, Environmental Microbiology, vol.98, issue.8, pp.1959-1970, 2009.
DOI : 10.1111/j.1462-2920.2009.01918.x

K. Okada, T. Iida, K. Kita-tsukamoto, and T. Honda, Vibrios Commonly Possess Two Chromosomes, Journal of Bacteriology, vol.187, issue.2, pp.752-757, 2005.
DOI : 10.1128/JB.187.2.752-757.2005

G. Demarre and D. Chattoraj, DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle, PLoS Genetics, vol.187, issue.5, 2010.
DOI : 10.1371/journal.pgen.1000939.s005

R. Dryselius, K. Izutsu, T. Honda, and T. Iida, Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location, BMC Genomics, vol.9, issue.1, p.559, 2008.
DOI : 10.1186/1471-2164-9-559

S. Duigou, K. Knudsen, O. Skovgaard, E. Egan, and A. Lobner-olesen, Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB, Journal of Bacteriology, vol.188, issue.17, pp.6419-6424, 2006.
DOI : 10.1128/JB.00565-06

E. Egan and M. Waldor, Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes, Cell, vol.114, issue.4, pp.521-530, 2003.
DOI : 10.1016/S0092-8674(03)00611-1

M. Fogel and M. Waldor, Distinct segregation dynamics of the two Vibrio cholerae chromosomes, Molecular Microbiology, vol.142, issue.1, pp.125-136, 2005.
DOI : 10.1111/j.1365-2958.2004.04379.x

M. Fogel and M. Waldor, A dynamic, mitotic-like mechanism for bacterial chromosome segregation, Genes & Development, vol.20, issue.23, pp.3269-3282, 2006.
DOI : 10.1101/gad.1496506

D. Pal, T. Venkova-canova, P. Srivastava, and D. Chattoraj, Multipartite Regulation of rctB, the Replication Initiator Gene of Vibrio cholerae Chromosome II, Journal of Bacteriology, vol.187, issue.21, pp.7167-7175, 2005.
DOI : 10.1128/JB.187.21.7167-7175.2005

T. Rasmussen, R. Jensen, and O. Skovgaard, The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle, The EMBO Journal, vol.100, issue.13, pp.3124-3131, 2007.
DOI : 10.1038/sj.emboj.7601747

P. Srivastava and D. Chattoraj, Selective chromosome amplification in Vibrio cholerae, Molecular Microbiology, vol.262, issue.4, pp.1016-1028, 2007.
DOI : 10.1111/j.1365-2958.2004.04389.x

P. Srivastava, R. Fekete, and D. Chattoraj, Segregation of the Replication Terminus of the Two Vibrio cholerae Chromosomes, Journal of Bacteriology, vol.188, issue.3, pp.1060-1070, 2006.
DOI : 10.1128/JB.188.3.1060-1070.2006

M. Val, S. Kennedy, E. Karoui, M. Bonne, L. Chevalier et al., FtsKdependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae, PLoS Genet, vol.4, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-01285588

Y. Yamaichi, M. Fogel, and M. Waldor, par genes and the pathology of chromosome loss in Vibrio cholerae, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.630-635, 2007.
DOI : 10.1073/pnas.0608341104

M. Schmid, A. Fernandez-badillo, W. Feichtinger, C. Steinlein, and J. Roman, On the highest chromosome number in mammals, Cytogenetic and Genome Research, vol.49, issue.4, pp.305-308, 1988.
DOI : 10.1159/000132683

S. Duigou, Y. Yamaichi, and M. Waldor, ATP negatively regulates the initiator protein of Vibrio cholerae chromosome II replication, Proceedings of the National Academy of Sciences, vol.105, issue.30, pp.10577-10582, 2008.
DOI : 10.1073/pnas.0803904105

Y. Yamaichi, S. Duigou, E. Shakhnovich, and M. Waldor, Targeting the Replication Initiator of the Second Vibrio Chromosome: Towards Generation of Vibrionaceae-Specific Antimicrobial Agents, PLoS Pathogens, vol.100, issue.11, 2009.
DOI : 10.1371/journal.ppat.1000663.t003

E. Egan, A. Lobner-olesen, and M. Waldor, Synchronous replication initiation of the two Vibrio cholerae chromosomes, Current Biology, vol.14, issue.13, pp.501-502, 2004.
DOI : 10.1016/j.cub.2004.06.036

A. Lobner-olesen, O. Skovgaard, and M. Marinus, Dam methylation: coordinating cellular processes, Current Opinion in Microbiology, vol.8, issue.2, pp.154-160, 2005.
DOI : 10.1016/j.mib.2005.02.009

S. Julio, D. Heithoff, D. Provenzano, K. Klose, and R. Sinsheimer, DNA Adenine Methylase Is Essential for Viability and Plays a Role in the Pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae, Infection and Immunity, vol.69, issue.12, pp.7610-7615, 2001.
DOI : 10.1128/IAI.69.12.7610-7615.2001

L. Kahng and L. Shapiro, The CcrM DNA Methyltransferase of Agrobacterium tumefaciens Is Essential, and Its Activity Is Cell Cycle Regulated, Journal of Bacteriology, vol.183, issue.10, pp.3065-3075, 2001.
DOI : 10.1128/JB.183.10.3065-3075.2001

G. Robertson, A. Reisenauer, R. Wright, R. Jensen, and A. Jensen, The Brucella abortus CcrM DNA Methyltransferase Is Essential for Viability, and Its Overexpression Attenuates Intracellular Replication in Murine Macrophages, Journal of Bacteriology, vol.182, issue.12, pp.3482-3489, 2000.
DOI : 10.1128/JB.182.12.3482-3489.2000

R. Wright, C. Stephens, and L. Shapiro, The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus., Journal of Bacteriology, vol.179, issue.18, pp.5869-5877, 1997.
DOI : 10.1128/jb.179.18.5869-5877.1997

B. Koch, X. Ma, and A. Lobner-olesen, Replication of Vibrio cholerae Chromosome I in Escherichia coli: Dependence on Dam Methylation, Journal of Bacteriology, vol.192, issue.15, pp.3903-3914, 2010.
DOI : 10.1128/JB.00311-10

G. Draper and J. Gober, Bacterial Chromosome Segregation, Annual Review of Microbiology, vol.56, issue.1, pp.567-597, 2002.
DOI : 10.1146/annurev.micro.56.012302.160729

T. Leonard, J. Moller-jensen, and J. Lowe, Towards understanding the molecular basis of bacterial DNA segregation, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.19, issue.17, pp.523-535, 2005.
DOI : 10.1093/emboj/19.17.4838

C. Lesterlin, F. Barre, and F. Cornet, Genetic recombination and the cell cycle: what we have learned from chromosome dimers, Molecular Microbiology, vol.180, issue.5, pp.1151-1160, 2004.
DOI : 10.1111/j.1365-2958.2004.04356.x

N. Campo, M. Dias, M. Daveran-mingot, P. Ritzenthaler, L. Bourgeois et al., Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions, Molecular Microbiology, vol.30, issue.2, pp.511-522, 2004.
DOI : 10.1046/j.1365-2958.2003.03847.x

E. Esnault, M. Valens, O. Espeli, and F. Boccard, Chromosome Structuring Limits Genome Plasticity in Escherichia coli, PLoS Genetics, vol.334, issue.12, 2007.
DOI : 10.1371/journal.pgen.0030226.st001

M. Guijo, J. Patte, M. Del-mar-campos, J. Louarn, and J. Rebollo, Localized remodeling of the Escherichia coli chromosome: the patchwork of segments refractory and tolerant to inversion near the replication terminus, Genetics, vol.157, pp.1413-1423, 2001.

C. Hill and J. Gray, Effects of chromosomal inversion on cell fitness in Escherichia coli K-12, Genetics, vol.119, pp.771-778, 1988.

C. Lesterlin, R. Mercier, F. Boccard, F. Barre, and F. Cornet, Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome, EMBO reports, vol.85, issue.6, pp.557-562, 2005.
DOI : 10.1046/j.1365-2958.2003.03574.x

G. Liu, W. Liu, R. Johnston, K. Sanderson, and S. Li, Genome Plasticity and ori-ter Rebalancing in Salmonella typhi, Molecular Biology and Evolution, vol.23, issue.2, pp.365-371, 2006.
DOI : 10.1093/molbev/msj042

J. Louarn, J. Bouche, F. Legendre, J. Louarn, and J. Patte, Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis, MGG Molecular & General Genetics, vol.153, issue.3, pp.467-476, 1985.
DOI : 10.1007/BF00331341

L. Miesel, A. Segall, and J. Roth, Construction of chromosomal rearrangements in Salmonella by transduction: inversions of non-permissive segments are not lethal, Genetics, vol.137, pp.919-932, 1994.

J. Rebollo, V. Francois, and J. Louarn, Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome., Proceedings of the National Academy of Sciences, vol.85, issue.24, pp.9391-9395, 1988.
DOI : 10.1073/pnas.85.24.9391

E. Rocha and A. Danchin, Gene essentiality determines chromosome organisation in bacteria, Nucleic Acids Research, vol.31, issue.22, pp.6570-6577, 2003.
DOI : 10.1093/nar/gkg859

A. Segall, M. Mahan, and J. Roth, Rearrangement of the bacterial chromosome: forbidden inversions, Science, vol.241, issue.4871, pp.1314-1318, 1988.
DOI : 10.1126/science.3045970

T. Cui, N. Moro-oka, K. Ohsumi, K. Kodama, and T. Ohshima, Escherichia coli with a linear genome, EMBO reports, vol.183, issue.2, pp.181-187, 2007.
DOI : 10.1038/sj.embor.7400880

M. Itaya and T. Tanaka, Experimental surgery to create subgenomes of Bacillus subtilis 168, Proceedings of the National Academy of Sciences, vol.94, issue.10, pp.5378-5382, 1997.
DOI : 10.1073/pnas.94.10.5378

V. Kolisnychenko, G. Plunkett, C. Herring, T. Feher, and J. Posfai, Engineering a Reduced Escherichia coli Genome, Genome Research, vol.12, issue.4, pp.640-647, 2002.
DOI : 10.1101/gr.217202

J. Volff, P. Viell, and J. Altenbuchner, Artificial circularization of the chromosome with concomitant deletion of its terminal inverted repeats enhances genetic instability and genome rearrangement in Streptomyces lividans, Molecular and General Genetics MGG, vol.253, issue.6, pp.753-760, 1997.
DOI : 10.1007/s004380050380

H. Hendrickson and J. Lawrence, Selection for Chromosome Architecture in Bacteria, Journal of Molecular Evolution, vol.1, issue.5, pp.615-629, 2006.
DOI : 10.1007/s00239-005-0192-2

J. Louarn, P. Kuempel, and F. Cornet, The Terminus Region of the Escherichia coli Chromosome, or, All's Well That Ends Well, pp.251-273, 2005.
DOI : 10.1128/9781555817640.ch13

E. Rocha, The Organization of the Bacterial Genome, Annual Review of Genetics, vol.42, issue.1, pp.211-233, 2008.
DOI : 10.1146/annurev.genet.42.110807.091653

T. Vesth, T. Wassenaar, P. Hallin, L. Snipen, and K. Lagesen, On the Origins of a Vibrio Species, Microbial Ecology, vol.51, issue.1, pp.1-13, 2010.
DOI : 10.1007/s00248-009-9596-7

R. Weisberg, M. Gottesmann, R. Hendrix, and J. Little, Family Values in The Age of Genomics: Comparative Analyses of Temperate Bacteriophage HK022, Annual Review of Genetics, vol.33, issue.1, pp.565-602, 1999.
DOI : 10.1146/annurev.genet.33.1.565

B. Sauer, Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome, Nucleic Acids Research, vol.24, issue.23, pp.4608-4613, 1996.
DOI : 10.1093/nar/24.23.4608

S. Turan, J. Kuehle, A. Schambach, C. Baum, and J. Bode, Multiplexing RMCE: Versatile Extensions of the Flp-Recombinase-Mediated Cassette-Exchange Technology, Journal of Molecular Biology, vol.402, issue.1, pp.52-69, 2010.
DOI : 10.1016/j.jmb.2010.07.015

M. Gottesman and R. Weisberg, Prophage Insertion and Excision, pp.113-138, 1971.

Y. Yamaichi, M. Fogel, S. Mcleod, M. Hui, and M. Waldor, Distinct Centromere-Like parS Sites on the Two Chromosomes of Vibrio spp., Journal of Bacteriology, vol.189, issue.14, pp.5314-5324, 2007.
DOI : 10.1128/JB.00416-07

S. Austin and K. Nordstrom, Partition-mediated incompatibility of bacterial plasmids, Cell, vol.60, issue.3, pp.351-354, 1990.
DOI : 10.1016/0092-8674(90)90584-2

M. Marinus and J. Casadesus, Roles of DNA adenine methylation in host???pathogen interactions: mismatch repair, transcriptional regulation, and more, FEMS Microbiology Reviews, vol.33, issue.3, pp.488-503, 2009.
DOI : 10.1111/j.1574-6976.2008.00159.x

K. Perals, F. Cornet, Y. Merlet, I. Delon, and J. Louarn, Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity, Molecular Microbiology, vol.180, issue.1, pp.33-43, 2000.
DOI : 10.1016/S0092-8674(00)81909-1

W. Steiner and P. Kuempel, Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site, J Bacteriol, vol.180, pp.6269-6275, 1998.

M. Cox, M. Goodman, K. Kreuzer, D. Sherratt, and S. Sandler, The importance of repairing stalled replication forks, Nature, vol.404, pp.37-41, 2000.

G. Cromie and D. Leach, Control of Crossing Over, Molecular Cell, vol.6, issue.4, pp.815-826, 2000.
DOI : 10.1016/S1097-2765(05)00095-X

B. Michel, G. Recchia, M. Penel-colin, S. Ehrlich, and D. Sherratt, Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells, Molecular Microbiology, vol.20, issue.1, pp.180-191, 2000.
DOI : 10.1146/annurev.genet.31.1.213

E. Couturier and E. Rocha, Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes, Molecular Microbiology, vol.52, issue.5, pp.1506-1518, 2006.
DOI : 10.1111/j.1365-2958.2006.05046.x

G. Cambray, V. Mutalik, and A. Arkin, Toward rational design of bacterial genomes, Current Opinion in Microbiology, vol.14, issue.5, 2011.
DOI : 10.1016/j.mib.2011.08.001

D. Gibson, G. Benders, C. Andrews-pfannkoch, E. Denisova, and H. Baden-tillson, Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome, Science, vol.319, issue.5867, pp.1215-1220, 2008.
DOI : 10.1126/science.1151721

C. Lartigue, S. Vashee, M. Algire, R. Chuang, and G. Benders, Creating Bacterial Strains from Genomes That Have Been Cloned and Engineered in Yeast, Science, vol.325, issue.5948, pp.1693-1696, 2009.
DOI : 10.1126/science.1173759

P. Carr and G. Church, Genome engineering, Nature Biotechnology, vol.36, issue.12, pp.1151-1162, 2009.
DOI : 10.1038/nbt.1590

X. Guo, M. Flores, P. Mavingui, S. Fuentes, and G. Hernandez, Natural genomic design in Sinorhizobium meliloti: novel genomic architectures, Genome Res, vol.13, pp.1810-1817, 2003.

L. Roux, F. Binesse, J. Saulnier, D. Mazel, and D. , Construction of a Vibrio splendidus Mutant Lacking the Metalloprotease Gene vsm by Use of a Novel Counterselectable Suicide Vector, Applied and Environmental Microbiology, vol.73, issue.3, pp.777-784, 2007.
DOI : 10.1128/AEM.02147-06

E. Guerin, G. Cambray, N. Sanchez-alberola, S. Campoy, and I. Erill, The SOS Response Controls Integron Recombination, Science, vol.324, issue.5930, p.1034, 2009.
DOI : 10.1126/science.1172914

URL : https://hal.archives-ouvertes.fr/hal-00409031

P. Cherepanov and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant, Gene, vol.158, issue.1, pp.9-14, 1995.
DOI : 10.1016/0378-1119(95)00193-A

K. Datsenko and B. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6640-6645, 2000.
DOI : 10.1073/pnas.120163297

T. Iida, O. Suthienkul, K. Park, G. Tang, and R. Yamamoto, Evidence for genetic linkage between the ure and trh genes in Vibrio parahaemolyticus, Journal of Medical Microbiology, vol.46, issue.8, pp.639-645, 1997.
DOI : 10.1099/00222615-46-8-639

S. Cooper and C. Helmstetter, Chromosome replication and the division cycle of Escherichia coli, Journal of Molecular Biology, vol.31, issue.3, pp.519-540, 1968.
DOI : 10.1016/0022-2836(68)90425-7

O. Michelsen, T. De-mattos, M. Jensen, P. Hansen, and F. , Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r, Microbiology, vol.149, issue.4, pp.1001-1010, 2003.
DOI : 10.1099/mic.0.26058-0

K. Skarstad, H. Steen, and E. Boye, Escherichia coli DNA distributions measured by flow cytometry and compared with theoretical computer simulations, J Bacteriol, vol.163, pp.661-668, 1985.