J. Heidelberg, J. Eisen, W. Nelson, R. Clayton, and M. Gwinn, DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae, Nature, vol.406, pp.477-483, 2000.

Q. Xu, M. Dziejman, and J. Mekalanos, Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.1286-1291, 2003.
DOI : 10.1073/pnas.0337479100

S. Casjens, THE DIVERSE AND DYNAMIC STRUCTURE OF BACTERIAL GENOMES, Annual Review of Genetics, vol.32, issue.1, pp.339-377, 1998.
DOI : 10.1146/annurev.genet.32.1.339

Y. Yamaichi, M. Fogel, and M. Waldor, par genes and the pathology of chromosome loss in Vibrio cholerae, Proceedings of the National Academy of Sciences, vol.104, issue.2, pp.630-635, 2007.
DOI : 10.1073/pnas.0608341104

P. Srivastava and D. Chattoraj, Selective chromosome amplification in Vibrio cholerae, Molecular Microbiology, vol.262, issue.4, pp.1016-1028, 2007.
DOI : 10.1111/j.1365-2958.2004.04389.x

T. Rasmussen, R. Jensen, and O. Skovgaard, The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle, The EMBO Journal, vol.100, issue.13, pp.3124-3131, 2007.
DOI : 10.1038/sj.emboj.7601747

M. Fogel and M. Waldor, A dynamic, mitotic-like mechanism for bacterial chromosome segregation, Genes & Development, vol.20, issue.23, pp.3269-3282, 2006.
DOI : 10.1101/gad.1496506

E. Egan and M. Waldor, Distinct Replication Requirements for the Two Vibrio cholerae Chromosomes, Cell, vol.114, issue.4, pp.521-530, 2003.
DOI : 10.1016/S0092-8674(03)00611-1

S. Duigou, K. Knudsen, O. Skovgaard, E. Egan, and A. Lobner-olesen, Independent Control of Replication Initiation of the Two Vibrio cholerae Chromosomes by DnaA and RctB, Journal of Bacteriology, vol.188, issue.17, pp.6419-6424, 2006.
DOI : 10.1128/JB.00565-06

N. Dubarry, F. Pasta, and D. Lane, ParABS Systems of the Four Replicons of Burkholderia cenocepacia: New Chromosome Centromeres Confer Partition Specificity, Journal of Bacteriology, vol.188, issue.4, pp.1489-1496, 2006.
DOI : 10.1128/JB.188.4.1489-1496.2006

URL : https://hal.archives-ouvertes.fr/hal-00021154

P. Srivastava, R. Fekete, and D. Chattoraj, Segregation of the Replication Terminus of the Two Vibrio cholerae Chromosomes, Journal of Bacteriology, vol.188, issue.3, pp.1060-1070, 2006.
DOI : 10.1128/JB.188.3.1060-1070.2006

M. Fogel and M. Waldor, Distinct segregation dynamics of the two Vibrio cholerae chromosomes, Molecular Microbiology, vol.142, issue.1, pp.125-136, 2005.
DOI : 10.1111/j.1365-2958.2004.04379.x

Y. Yamaichi and H. Niki, Active segregation by the Bacillus subtilis partitioning system in Escherichia coli, Proceedings of the National Academy of Sciences, vol.97, issue.26, pp.14656-14661, 2000.
DOI : 10.1073/pnas.97.26.14656

E. Egan, M. Fogel, and M. Waldor, MicroReview: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes, Molecular Microbiology, vol.175, issue.Pt 1, pp.1129-1138, 2005.
DOI : 10.1111/j.1365-2958.2005.04622.x

B. Mcclintock, A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays, Proceedings of the National Academy of Sciences, vol.18, issue.12, pp.677-681, 1932.
DOI : 10.1073/pnas.18.12.677

K. Perals, F. Cornet, Y. Merlet, I. Delon, and J. Louarn, Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity, Molecular Microbiology, vol.180, issue.1, pp.33-43, 2000.
DOI : 10.1016/S0092-8674(00)81909-1

W. Steiner and P. Kuempel, Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site, J Bacteriol, vol.180, pp.6269-6275, 1998.

F. Barre and D. Sherratt, Xer Site-Specific Recombination: Promoting Chromosome Segregation, Mobile DNA II, pp.149-161, 2002.
DOI : 10.1128/9781555817954.ch8

T. Massey, C. Mercogliano, J. Yates, D. Sherratt, and J. Lowe, Double-Stranded DNA Translocation: Structure and Mechanism of Hexameric FtsK, Molecular Cell, vol.23, issue.4, pp.457-469, 2006.
DOI : 10.1016/j.molcel.2006.06.019

L. Aussel, F. Barre, M. Aroyo, A. Stasiak, and A. Stasiak, FtsK Is a DNA Motor Protein that Activates Chromosome Dimer Resolution by Switching the Catalytic State of the XerC and XerD Recombinases, Cell, vol.108, issue.2, pp.195-205, 2002.
DOI : 10.1016/S0092-8674(02)00624-4

S. Bigot, O. Saleh, F. Cornet, J. Allemand, and F. Barre, Oriented loading of FtsK on KOPS, Nature Structural & Molecular Biology, vol.13, issue.11, pp.1026-1028, 2006.
DOI : 10.1038/nsmb1158

URL : https://hal.archives-ouvertes.fr/hal-00131558

O. Levy, J. Ptacin, P. Pease, J. Gore, and M. Eisen, Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase, Proceedings of the National Academy of Sciences, vol.102, issue.49, pp.17618-17623, 2005.
DOI : 10.1073/pnas.0508932102

S. Bigot, O. Saleh, C. Lesterlin, C. Pages, E. Karoui et al., KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase, The EMBO Journal, vol.19, issue.21, pp.3770-3780, 2005.
DOI : 10.1046/j.1365-2958.2003.03574.x

URL : https://hal.archives-ouvertes.fr/hal-00013989

J. Yates, I. Zhekov, R. Baker, B. Eklund, and D. Sherratt, Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase, Molecular Microbiology, vol.180, issue.6, pp.1754-1766, 2006.
DOI : 10.1046/j.1365-2958.2003.03574.x

J. Yates, M. Aroyo, D. Sherratt, and F. Barre, Species specificity in the activation of Xer recombination at dif by FtsK, Molecular Microbiology, vol.180, issue.1, pp.241-249, 2003.
DOI : 10.1046/j.1365-2958.2003.03574.x

S. Kennedy, C. F. Barre, and F. , Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli, Molecular Microbiology, vol.180, issue.4, 2008.
DOI : 10.1111/j.1365-2958.2005.05033.x

L. Bourgeois, P. Bugarel, M. Campo, N. Daveran-mingot, M. Labonte et al., The Unconventional Xer Recombination Machinery of Streptococci/Lactococci, PLoS Genetics, vol.216, issue.7, p.117, 2007.
DOI : 10.1371/journal.pgen.0030117.st001

URL : https://hal.archives-ouvertes.fr/hal-00180535

K. Abremski, R. Hoess, and N. Sternberg, Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination, Cell, vol.32, issue.4, pp.1301-1311, 1983.
DOI : 10.1016/0092-8674(83)90311-2

F. Cornet, I. Mortier, J. Patte, and J. Louarn, Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif., Journal of Bacteriology, vol.176, issue.11, pp.3188-3195, 1994.
DOI : 10.1128/jb.176.11.3188-3195.1994

G. Blakely, G. May, R. Mcculloch, L. Arciszewska, and M. Burke, Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12, Cell, vol.75, issue.2, pp.351-361, 1993.
DOI : 10.1016/0092-8674(93)80076-Q

K. Huber and M. Waldor, Filamentous phage integration requires the host recombinases XerC and XerD, Nature, vol.63, issue.6889, pp.656-659, 2002.
DOI : 10.1006/plas.1996.0001

S. Mcleod and M. Waldor, Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae, Molecular Microbiology, vol.170, issue.4, pp.935-947, 2004.
DOI : 10.1111/j.1365-2958.2004.04309.x

G. Draper, N. Mclennan, K. Begg, M. Masters, and W. Donachie, Only the N-terminal domain of FtsK functions in cell division, J Bacteriol, vol.180, pp.4621-4627, 1998.

F. Barre, M. Aroyo, S. Colloms, A. Helfrich, and F. Cornet, FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation, Genes & Development, vol.14, issue.23, pp.2976-2988, 2000.
DOI : 10.1101/gad.188700

V. Sivanathan, M. Allen, C. De-bekker, R. Baker, and L. Arciszewska, The FtsK ?? domain directs oriented DNA translocation by interacting with KOPS, Nature Structural & Molecular Biology, vol.177, issue.11, pp.965-972, 2006.
DOI : 10.1093/emboj/19.9.2094

G. Recchia, M. Aroyo, D. Wolf, G. Blakely, and D. Sherratt, FtsK-dependent and -independent pathways of Xer site-specific recombination, The EMBO Journal, vol.18, issue.20, pp.5724-5734, 1999.
DOI : 10.1093/emboj/18.20.5724

H. Capiaux, C. Lesterlin, K. Perals, J. Louarn, and F. Cornet, A dual role for the FtsK protein in Escherichia coli chromosome segregation, EMBO reports, vol.180, issue.6, pp.532-536, 2002.
DOI : 10.1093/embo-reports/kvf116

N. Philippe, J. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider, Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria, Plasmid, vol.51, issue.3, pp.246-255, 2004.
DOI : 10.1016/j.plasmid.2004.02.003

URL : https://hal.archives-ouvertes.fr/hal-00266716

G. Demarre, A. Guerout, C. Matsumoto-mashimo, D. Rowe-magnus, and P. Marlière, A new family of mobilizable suicide plasmids based on the broad host range R388 plasmid (IncW) or RP4 plasmid (IncPa) conjugative machineries and their cognate E.coli host strains, Research in Microbiology, 2005.

S. Bigot, J. Corre, J. Louarn, F. Cornet, and F. Barre, FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein, Molecular Microbiology, vol.180, issue.4, pp.876-886, 2004.
DOI : 10.1111/j.1365-2958.2004.04335.x

D. Halpern, H. Chiapello, S. Schbath, S. Robin, and C. Hennequet-antier, Identification of DNA Motifs Implicated in Maintenance of Bacterial Core Genomes by Predictive Modeling, PLoS Genetics, vol.95, issue.9, pp.1614-1621, 2007.
DOI : 10.1371/journal.pgen.0030153.st005

URL : https://hal.archives-ouvertes.fr/hal-01197542