S. Josefowicz, L. Lu, and A. Rudensky, Regulatory T Cells: Mechanisms of Differentiation and Function, Annual Review of Immunology, vol.30, issue.1, pp.531-64, 2007.
DOI : 10.1146/annurev.immunol.25.022106.141623

A. Abbas, C. Benoist, J. Bluestone, D. Campbell, S. Ghosh et al., Regulatory T cells: recommendations to simplify the nomenclature, Nature Immunology, vol.14, issue.4, pp.307-315, 2013.
DOI : 10.1038/ni.2554

E. Shevach and A. Thornton, tTregs, pTregs, and iTregs: similarities and differences, Immunological Reviews, vol.35, issue.1, pp.88-102, 2014.
DOI : 10.1111/imr.12160

K. Weissler and A. Caton, regulatory T cells, Immunological Reviews, vol.183, issue.1, pp.11-22, 2014.
DOI : 10.1111/imr.12177

G. Wieczorek, A. Asemissen, F. Model, I. Turbachova, S. Gloess et al., Quantitative DNA Methylation Analysis of FOXP3 as a New Method for Counting Regulatory T Cells in Peripheral Blood and Solid Tissue, Cancer Research, vol.69, issue.2, pp.599-608, 2009.
DOI : 10.1158/0008-5472.CAN-08-2361

M. Yadav, S. Stephan, and J. Bluestone, Peripherally Induced Tregs ??? Role in Immune Homeostasis and Autoimmunity, Frontiers in Immunology, vol.4, 2013.
DOI : 10.3389/fimmu.2013.00232

C. Maynard, L. Harrington, K. Janowski, J. Oliver, C. Zindl et al., Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3??? precursor cells in the absence of interleukin 10, Nature Immunology, vol.171, issue.9, pp.931-4110, 1038.
DOI : 10.1016/j.immuni.2006.09.013

H. Groux, O. Garra, A. Bigler, M. Rouleau, M. Antonenko et al., A CD4 + T-cell subset inhibits antigen-specific T-cell responses and prevents colitis, Nature, vol.389, pp.737-421039614, 1038.

S. Gregori, K. Goudy, and M. Roncarolo, The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells, Frontiers in Immunology, vol.3, 2012.
DOI : 10.3389/fimmu.2012.00030

M. Roncarolo, S. Gregori, R. Bacchetta, and M. Battaglia, Tr1 cells and the counterregulation of immunity: natural mechanisms and therapeutic applications, Curr Top Microbiol Immunol, vol.380, pp.39-68978, 2014.

Y. Chen, V. Kuchroo, J. Inobe, D. Hafler, and H. Weiner, Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis, Science, vol.265, issue.5176, pp.1237-1277, 1994.
DOI : 10.1126/science.7520605

H. Ochi, M. Abraham, H. Ishikawa, D. Frenkel, K. Yang et al., Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25???LAP+ T cells, Nature Medicine, vol.141, issue.6, pp.627-3510, 1038.
DOI : 10.1038/nm1408

A. Awasthi, Y. Carrier, J. Peron, E. Bettelli, M. Kamanaka et al., A dominant function for interleukin 27 in generating interleukin 10???producing anti-inflammatory T cells, Nature Immunology, vol.25, issue.12, pp.1380-1389, 1541.
DOI : 10.1038/ni1541

C. Hawrylowicz, O. Garra, and A. , Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma, Nature Reviews Immunology, vol.110, issue.4, pp.271-83, 1589.
DOI : 10.1096/fj.02-1008com

C. Magnani, G. Alberigo, R. Bacchetta, G. Serafini, M. Andreani et al., Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells, European Journal of Immunology, vol.294, issue.6, pp.1652-62, 2011.
DOI : 10.1002/eji.201041120

R. Gandhi, M. Farez, Y. Wang, D. Kozoriz, F. Quintana et al., Cutting Edge: Human Latency-Associated Peptide+ T Cells: A Novel Regulatory T Cell Subset, The Journal of Immunology, vol.184, issue.9, pp.4620-4624, 2010.
DOI : 10.4049/jimmunol.0903329

K. Atarashi, T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara et al., Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species, Science, vol.331, issue.6015, pp.337-378, 2011.
DOI : 10.1126/science.1198469

E. Kugelberg, Mucosal immunology: Bacteria get TReg cells into shape, Nature Reviews Immunology, vol.14, issue.1, pp.2-3, 2014.
DOI : 10.1038/nri3583

J. Maul, C. Loddenkemper, P. Mundt, E. Berg, T. Giese et al., Peripheral and Intestinal Regulatory CD4+CD25high T Cells in Inflammatory Bowel Disease, Gastroenterology, vol.128, issue.7, pp.1868-78, 2005.
DOI : 10.1053/j.gastro.2005.03.043

J. Buckner, Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases, Nature Reviews Immunology, vol.3, issue.12, pp.849-59, 2010.
DOI : 10.1038/nri2889

T. Tanoue and K. Honda, Induction of Treg cells in the mouse colonic mucosa: A central mechanism to maintain host???microbiota homeostasis, Seminars in Immunology, vol.24, issue.1, 2012.
DOI : 10.1016/j.smim.2011.11.009

T. Macdonald, I. Monteleone, M. Fantini, and G. Monteleone, Regulation of Homeostasis and Inflammation in the Intestine, Gastroenterology, vol.140, issue.6, pp.1768-75, 2011.
DOI : 10.1053/j.gastro.2011.02.047

G. Sarrabayrouse, C. Bossard, J. Chauvin, A. Jarry, G. Meurette et al., CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease, PLoS Biol, 2014.

K. Atarashi, T. Tanoue, K. Oshima, W. Suda, Y. Nagano et al., Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota, Nature, vol.158, issue.7461, pp.232-238, 2013.
DOI : 10.1038/nature12331

Y. Goto, C. Panea, G. Nakato, A. Cebula, C. Lee et al., Segmented Filamentous Bacteria Antigens Presented by Intestinal Dendritic Cells Drive Mucosal Th17 Cell Differentiation, Immunity, vol.40, issue.4, pp.594-607, 2014.
DOI : 10.1016/j.immuni.2014.03.005

URL : http://doi.org/10.1016/j.immuni.2014.03.005

G. Hold, A. Schwiertz, R. Aminov, M. Blaut, and H. Flint, Oligonucleotide Probes That Detect Quantitatively Significant Groups of Butyrate-Producing Bacteria in Human Feces, Applied and Environmental Microbiology, vol.69, issue.7, 2003.
DOI : 10.1128/AEM.69.7.4320-4324.2003

S. Miquel, R. Martin, O. Rossi, L. Bermudez-humaran, J. Chatel et al., Faecalibacterium prausnitzii and human intestinal health, Current Opinion in Microbiology, vol.16, issue.3, pp.255-61, 2013.
DOI : 10.1016/j.mib.2013.06.003

URL : https://hal.archives-ouvertes.fr/hal-00842645

H. Sokol, B. Pigneur, L. Watterlot, O. Lakhdari, L. Bermudez-humaran et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.16731-16737, 2008.
DOI : 10.1073/pnas.0804812105

URL : https://hal.archives-ouvertes.fr/hal-00652961

B. Willing, J. Halfvarson, J. Dicksved, M. Rosenquist, G. Jarnerot et al., Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn??s disease, Inflammatory Bowel Diseases, vol.15, issue.5, pp.653-60, 2009.
DOI : 10.1002/ibd.20783

C. Manichanh, N. Borruel, F. Casellas, and F. Guarner, The gut microbiota in IBD, Nature Reviews Gastroenterology & Hepatology, vol.252, issue.10, pp.599-608, 2012.
DOI : 10.1038/nrgastro.2012.152

H. Sokol, P. Seksik, J. Furet, O. Firmesse, I. Nion-larmurier et al., Low counts of Faecalibacterium prausnitzii in colitis microbiota, Inflammatory Bowel Diseases, vol.15, issue.8, pp.1183-1192, 2009.
DOI : 10.1002/ibd.20903

URL : https://hal.archives-ouvertes.fr/hal-00657435

K. Machiels, M. Joossens, J. Sabino, D. Preter, V. Arijs et al., defines dysbiosis in patients with ulcerative colitis, Gut, vol.29, issue.(Suppl 1), pp.1275-83, 2013.
DOI : 10.1136/gutjnl-2013-304833

R. Martin, F. Chain, S. Miquel, J. Lu, J. Gratadoux et al., The Commensal Bacterium Faecalibacterium prausnitzii Is Protective in DNBS-induced Chronic Moderate and Severe Colitis Models, Inflammatory Bowel Diseases, vol.20, issue.3, pp.417-447, 2014.
DOI : 10.1097/01.MIB.0000440815.76627.64

URL : https://hal.archives-ouvertes.fr/hal-00931932

E. Quévrain, M. Maubert, C. Michon, F. Chain, R. Marquant et al., Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease, Gut, pp.10-1136, 2015.

N. Gagliani, C. Magnani, S. Huber, M. Gianolini, M. Pala et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells, Nature Medicine, vol.184, issue.6, pp.739-463179, 2013.
DOI : 10.1038/nm.3179

J. Fontenot, M. Gavin, and A. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nature Immunology, vol.4, issue.4, pp.330-336, 2003.
DOI : 10.1038/ni904

A. Arvey, J. Van-der-veeken, R. Samstein, Y. Feng, J. Stamatoyannopoulos et al., Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells, Nature Immunology, vol.15, issue.6, pp.580-587, 2007.
DOI : 10.1038/nbt.1508

G. Das, M. Augustine, J. Das, K. Bottomly, P. Ray et al., An important regulatory role for CD4+CD8???? T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease, Proceedings of the National Academy of Sciences, vol.100, issue.9, pp.5324-5333, 2003.
DOI : 10.1073/pnas.0831037100

A. Mowat and W. Agace, Regional specialization within the intestinal immune system, Nature Reviews Immunology, vol.12, issue.10, pp.667-85, 2014.
DOI : 10.1111/j.1749-6632.2010.05708.x

H. Chung, S. Pamp, J. Hill, N. Surana, S. Edelman et al., Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota, Cell, vol.149, issue.7, pp.1578-93, 2012.
DOI : 10.1016/j.cell.2012.04.037

N. Patey-mariaud-de-serre, D. Canioni, S. Ganousse, F. Rieux-laucat, O. Goulet et al., Digestive histopathological presentation of IPEX syndrome, Modern Pathology, vol.14, issue.1, pp.95-102161, 2008.
DOI : 10.1038/modpathol.2008.161

X. Paliard, R. Malefijt, J. De-vries, and H. Spits, Interleukin-4 mediates CDS induction on human CD4+ T-cell clones, Nature, vol.335, issue.6191, pp.642-646, 1988.
DOI : 10.1038/335642a0

V. Rybakin, J. Clamme, J. Ampudia, P. Yachi, and N. Gascoigne, CD8???? and -???? isotypes are equally recruited to the immunological synapse through their ability to bind to MHC class I, EMBO reports, vol.10, issue.12, pp.1251-1257, 2011.
DOI : 10.1038/embor.2011.209

A. Leishman, O. Naidenko, A. Attinger, F. Koning, C. Lena et al., T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science, vol.294, pp.1936-1945, 2001.

N. Campbell, M. Park, L. Toy, X. Yio, L. Devine et al., A Non-class I MHC Intestinal Epithelial Surface Glycoprotein, gp180, Binds to CD8, Clinical Immunology, vol.102, issue.3, pp.267-745170, 2001.
DOI : 10.1006/clim.2001.5170

G. Roda, X. Jianyu, M. Park, L. Demarte, Z. Hovhannisyan et al., Characterizing CEACAM5 interaction with CD8?? and CD1d in intestinal homeostasis, Mucosal Immunology, vol.160, issue.3, pp.615-639, 2014.
DOI : 10.1002/ibd.21023

M. Allez, J. Brimnes, L. Shao, I. Dotan, A. Nakazawa et al., T Cells by Intestinal Epithelial Cells, Annals of the New York Academy of Sciences, vol.186, issue.1, pp.22-35, 2004.
DOI : 10.1196/annals.1309.004

Y. Huang, Y. Park, Y. Wang-zhu, A. Larange, R. Arens et al., Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule, Nature Immunology, vol.178, issue.11, pp.1086-95, 2011.
DOI : 10.1128/JVI.77.24.13348-13360.2003

A. Levine, A. Arvey, J. W. Rudensky, and A. , Continuous requirement for the TCR in regulatory T cell function, Nature Immunology, vol.117, issue.11, pp.1070-1078, 2010.
DOI : 10.1038/nature10434

S. Kawamoto, M. Maruya, L. Kato, W. Suda, K. Atarashi et al., Foxp3+ T Cells Regulate Immunoglobulin A Selection and Facilitate Diversification of Bacterial Species Responsible for Immune Homeostasis, Immunity, vol.41, issue.1, pp.152-65, 2014.
DOI : 10.1016/j.immuni.2014.05.016