W. Haas, P. Pereira, and S. Tonegawa, Gamma/Delta Cells, Annual Review of Immunology, vol.11, issue.1, pp.637-85, 1993.
DOI : 10.1146/annurev.iy.11.040193.003225

A. Hayday, ???? Cells: A Right Time and a Right Place for a Conserved Third Way of Protection, Annual Review of Immunology, vol.18, issue.1, pp.975-1026, 2000.
DOI : 10.1146/annurev.immunol.18.1.975

A. Hayday, ???? T Cells and the Lymphoid Stress-Surveillance Response, Immunity, vol.31, issue.2, pp.184-96, 2009.
DOI : 10.1016/j.immuni.2009.08.006

Y. Chien, C. Meyer, and M. Bonneville, T Cells: First Line of Defense and Beyond, Annual Review of Immunology, vol.32, issue.1, pp.121-55, 2014.
DOI : 10.1146/annurev-immunol-032713-120216

K. Narayan, K. Sylvia, N. Malhotra, C. Yin, G. Martens et al., Intrathymic programming of effector fates in three molecularly distinct ???? T cell subtypes, Nature Immunology, vol.162, issue.5, pp.511-519, 2012.
DOI : 10.1016/S1534-5807(01)00003-X

W. Davis, W. Brown, M. Hamilton, C. Wyatt, J. Orden et al., Analysis of monoclonal antibodies specific for the ???? TcR, Veterinary Immunology and Immunopathology, vol.52, issue.4, pp.275-83, 1996.
DOI : 10.1016/0165-2427(96)05578-X

M. Hirano, P. Guo, N. Mccurley, M. Schorpp, S. Das et al., Evolutionary implications of a third lymphocyte lineage in lampreys, Nature, vol.45, issue.7467, pp.435-443, 2013.
DOI : 10.1038/nature12467

M. Bonneville, O. Brien, R. Born, and W. , ???? T cell effector functions: a blend of innate programming and acquired plasticity, Nature Reviews Immunology, vol.18, issue.7, pp.467-7810, 1038.
DOI : 10.1038/nri2781

M. Devilder, S. Maillet, I. Bouyge-moreau, E. Donnadieu, M. Bonneville et al., Potentiation of Antigen-Stimulated V??9V??2 T Cell Cytokine Production by Immature Dendritic Cells (DC) and Reciprocal Effect on DC Maturation, The Journal of Immunology, vol.176, issue.3, pp.1386-93, 2006.
DOI : 10.4049/jimmunol.176.3.1386

M. Devilder, S. Allain, C. Dousset, M. Bonneville, and E. Scotet, Early Triggering of Exclusive IFN-?? Responses of Human V??9V??2 T Cells by TLR-Activated Myeloid and Plasmacytoid Dendritic Cells, The Journal of Immunology, vol.183, issue.6, pp.3625-3658, 2009.
DOI : 10.4049/jimmunol.0901571

L. Conti, R. Casetti, M. Cardone, B. Varano, A. Martino et al., Reciprocal Activating Interaction Between Dendritic Cells and Pamidronate-Stimulated ???? T Cells: Role of CD86 and Inflammatory Cytokines, The Journal of Immunology, vol.174, issue.1, pp.252-60, 2005.
DOI : 10.4049/jimmunol.174.1.252

M. Ni, D. Martire, E. Scotet, M. Bonneville, F. Sanchez et al., Full restoration of Brucella-infected dendritic cell functionality through Vgamma9Vdelta2 T helper type 1 crosstalk, PLoS One, vol.7, issue.8, 2012.

M. Brandes, K. Willimann, and B. Moser, Professional Antigen-Presentation Function by Human gd T Cells, Science, vol.309, issue.5732, pp.264-272, 2005.
DOI : 10.1126/science.1110267

T. Allison, C. Winter, J. Fournie, M. Bonneville, and D. Garboczi, Structure of a human ???? T-cell antigen receptor, Nature, vol.411, issue.6839, pp.820-824, 2001.
DOI : 10.1038/35081115

E. Scotet, L. Martinez, E. Grant, R. Barbaras, P. Jeno et al., Tumor Recognition following V??9V??2 T Cell Receptor Interactions with a Surface F1-ATPase-Related Structure and Apolipoprotein A-I, Immunity, vol.22, issue.1, pp.71-80, 2005.
DOI : 10.1016/j.immuni.2004.11.012

X. Zeng, Y. Wei, J. Huang, E. Newell, H. Yu et al., ???? T Cells Recognize a Microbial Encoded B Cell Antigen to Initiate a Rapid Antigen-Specific Interleukin-17 Response, Immunity, vol.37, issue.3, pp.524-558, 2012.
DOI : 10.1016/j.immuni.2012.06.011

C. Willcox, V. Pitard, S. Netzer, L. Couzi, M. Salim et al., Cytomegalovirus and tumor stress surveillance by binding of a human ???? T cell antigen receptor to endothelial protein C receptor, Nature Immunology, vol.16, issue.9, pp.872-881, 2012.
DOI : 10.1016/S1074-7613(00)80035-7

F. Spada, E. Grant, P. Peters, M. Sugita, A. Melian et al., Self-Recognition of Cd1 by ??/?? T Cells, The Journal of Experimental Medicine, vol.138, issue.6, pp.937-985, 2000.
DOI : 10.1016/0198-8859(89)90081-5

A. Luoma, C. Castro, T. Mayassi, L. Bembinster, L. Bai et al., Crystal Structure of V??1??T Cell Receptor in Complex with CD1d-Sulfatide Shows MHC-like Recognition of a Self-Lipid by Human ???? T Cells, Immunity, vol.39, issue.6, pp.1032-1074, 2013.
DOI : 10.1016/j.immuni.2013.11.001

K. Garcia and E. Adams, How the T Cell Receptor Sees Antigen???A Structural View, Cell, vol.122, issue.3, pp.333-339, 2005.
DOI : 10.1016/j.cell.2005.07.015

E. Adams, Y. Chien, and K. Garcia, Structure of a ???? T Cell Receptor in Complex with the Nonclassical MHC T22, Science, vol.308, issue.5719, pp.227-258, 2005.
DOI : 10.1126/science.1106885

M. Lefranc and T. Rabbitts, A nomenclature to fit the organization of the human T-cell receptor ?? and ?? genes, Research in Immunology, vol.141, issue.6, pp.615-623, 1990.
DOI : 10.1016/0923-2494(90)90068-A

P. Constant, F. Davodeau, M. Peyrat, Y. Poquet, G. Puzo et al., Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands, Science, vol.264, issue.5156, pp.267-70, 1994.
DOI : 10.1126/science.8146660

Y. Tanaka, C. Morita, E. Nieves, M. Brenner, and B. Bloom, Natural and synthetic non-peptide antigens recognized by human ???? T cells, Nature, vol.375, issue.6527, pp.155-163, 1995.
DOI : 10.1038/375155a0

K. Pfeffer, B. Schoel, N. Plesnila, G. Lipford, S. Kromer et al., A lectinbinding , protease-resistant mycobacterial ligand specifically activates V gamma 9+ human gamma delta T cells, J Immunol, vol.148, issue.2, pp.575-83, 1992.

Y. Tanaka, S. Sano, E. Nieves, D. Libero, G. Rosa et al., Nonpeptide ligands for human gamma delta T cells., Proceedings of the National Academy of Sciences, vol.91, issue.17, pp.8175-8184, 1994.
DOI : 10.1073/pnas.91.17.8175

E. Espinosa, C. Belmant, H. Sicard, R. Poupot, M. Bonneville et al., Y2K+1 state-of-the-art on non-peptide phosphoantigens, a novel category of immunostimulatory molecules, Microbes and Infection, vol.3, issue.8, pp.645-54, 2001.
DOI : 10.1016/S1286-4579(01)01420-4

C. Belmant, E. Espinosa, R. Poupot, M. Peyrat, M. Guiraud et al., 3-Formyl-1-butyl Pyrophosphate A Novel Mycobacterial Metabolite-activating Human ???? T Cells, Journal of Biological Chemistry, vol.274, issue.45, pp.32079-84, 1999.
DOI : 10.1074/jbc.274.45.32079

H. Jomaa, J. Feurle, K. Luhs, V. Kunzmann, H. Tony et al., Vgamma9/Vdelta2 T cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-d-xylulose 5-phosphate pathway of isoprenoid biosynthesis, FEMS Immunol Med Microbiol, vol.25, issue.4, pp.371-379, 1999.

Y. Zhang, Y. Song, F. Yin, E. Broderick, K. Siegel et al., Structural Studies of V??2V??2 T Cell Phosphoantigens, Chemistry & Biology, vol.13, issue.9, pp.985-92, 2006.
DOI : 10.1016/j.chembiol.2006.08.007

H. Gober, M. Kistowska, L. Angman, P. Jeno, L. Mori et al., Human T Cell Receptor ???? Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells, The Journal of Experimental Medicine, vol.263, issue.2, pp.163-171, 2003.
DOI : 10.1038/sj.onc.1203002

V. Kunzmann, E. Bauer, and M. Wilhelm, ??/?? T-Cell Stimulation by Pamidronate, New England Journal of Medicine, vol.340, issue.9, pp.737-745, 1999.
DOI : 10.1056/NEJM199903043400914

M. Rohmer, M. Knani, P. Simonin, B. Sutter, and H. Sahm, Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate, Biochemical Journal, vol.295, issue.2, pp.517-541, 1993.
DOI : 10.1042/bj2950517

M. Eberl, B. Altincicek, A. Kollas, S. Sanderbrand, U. Bahr et al., Accumulation of a potent gammadelta T-cell stimulator after deletion of the lytB gene in Escherichia coli, Immunology, vol.167, issue.2, pp.200-211, 2002.
DOI : 10.1023/A:1005669319556

B. Altincicek, J. Moll, N. Campos, G. Foerster, E. Beck et al., Cutting Edge: Human ???? T Cells Are Activated by Intermediates of the 2-C-methyl-D-erythritol 4-phosphate Pathway of Isoprenoid Biosynthesis, The Journal of Immunology, vol.166, issue.6, pp.3655-3663, 2001.
DOI : 10.4049/jimmunol.166.6.3655

E. Espinosa, C. Belmant, F. Pont, B. Luciani, R. Poupot et al., Chemical Synthesis and Biological Activity of Bromohydrin Pyrophosphate, a Potent Stimulator of Human gamma delta T Cells, Journal of Biological Chemistry, vol.276, issue.21, pp.18337-18381, 2001.
DOI : 10.1074/jbc.M100495200

C. Belmant, E. Espinosa, F. Halary, Y. Tang, M. Peyrat et al., A chemical basis for selective recognition of nonpeptide antigens by human delta T cells, FASEB J, vol.14, issue.12, pp.1669-70, 2000.

G. Sireci, E. Espinosa, D. Sano, C. Dieli, F. Fournie et al., Differential activation of human gammadelta cells by nonpeptide phosphoantigens, 5<1628: :AID-IMMU1628>3.0.CO, pp.1628-1663, 2001.

A. Boedec, H. Sicard, J. Dessolin, G. Herbette, S. Ingoure et al., )-1-Hydroxy-2-methylbut-2-enyl 4-Diphosphate, Journal of Medicinal Chemistry, vol.51, issue.6, pp.1747-5410, 1021.
DOI : 10.1021/jm701101g

E. Sturm, E. Braakman, P. Fisch, R. Vreugdenhil, P. Sondel et al., Human V gamma 9-V delta 2 T cell receptor-gamma delta lymphocytes show specificity to Daudi Burkitt's lymphoma cells, J Immunol, issue.10, pp.1453202-1453210, 1990.

G. Panchamoorthy, J. Mclean, R. Modlin, C. Morita, S. Ishikawa et al., A predominance of the T cell receptor V gamma 2/V delta 2 subset in human mycobacteria-responsive T cells suggests germline gene encoded recognition, J Immunol, issue.10, pp.1473360-1473369, 1991.

F. Davodeau, M. Peyrat, M. Hallet, J. Gaschet, I. Houde et al., Close correlation between Daudi and mycobacterial antigen recognition by human gamma delta T cells and expression of V9JPC1 gamma/V2DJC delta-encoded T cell receptors, J Immunol, vol.151, issue.3, pp.1214-1237, 1993.

J. Bukowski, C. Morita, Y. Tanaka, B. Bloom, M. Brenner et al., V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer, J Immunol, vol.154, issue.3, pp.998-1006, 1995.

H. Das, L. Wang, A. Kamath, and J. Bukowski, Vgamma2Vdelta2 T-cell receptormediated recognition of aminobisphosphonates, Blood, vol.98, issue.5, 2001.

C. Morita, H. Lee, H. Wang, H. Li, R. Mariuzza et al., Structural Features of Nonpeptide Prenyl Pyrophosphates That Determine Their Antigenicity for Human ???? T Cells, The Journal of Immunology, vol.167, issue.1, pp.36-41, 2001.
DOI : 10.4049/jimmunol.167.1.36

V. Marcu-malina, S. Heijhuurs, M. Van-buuren, L. Hartkamp, S. Strand et al., Redirecting ????T cells against cancer cells by transfer of a broadly tumor-reactive ????T-cell receptor, Blood, vol.118, issue.1, pp.50-59, 2011.
DOI : 10.1182/blood-2010-12-325993

S. Nedellec, C. Sabourin, M. Bonneville, and E. Scotet, NKG2D Costimulates Human V??9V??2 T Cell Antitumor Cytotoxicity through Protein Kinase C??-Dependent Modulation of Early TCR-Induced Calcium and Transduction Signals, The Journal of Immunology, vol.185, issue.1, pp.55-63, 2010.
DOI : 10.4049/jimmunol.1000373

V. Lafont, J. Liautard, M. Sable-teychene, Y. Sainte-marie, and J. Favero, Isopentenyl Pyrophosphate, a Mycobacterial Non-peptidic Antigen, Triggers Delayed and Highly Sustained Signaling in Human ???? T Lymphocytes without Inducing Down-modulation of T Cell Antigen Receptor, Journal of Biological Chemistry, vol.276, issue.19, pp.15961-15968, 2001.
DOI : 10.1074/jbc.M008684200

D. Correia, F. Orey, B. Cardoso, T. Lanca, A. Grosso et al., Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk-and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta Tcells, PLoS One, vol.4, issue.5, 2009.

B. Cipriani, H. Knowles, L. Chen, L. Battistini, and C. Brosnan, Involvement of Classical and Novel Protein Kinase C Isoforms in the Response of Human V??9V??2 T Cells to Phosphate Antigens, The Journal of Immunology, vol.169, issue.10, pp.5761-70, 2002.
DOI : 10.4049/jimmunol.169.10.5761

J. Bukowski, C. Morita, H. Band, and M. Brenner, Crucial role of TCR gamma chain junctional region in prenyl pyrophosphate antigen recognition by gamma delta T cells, J Immunol, vol.161, issue.1, pp.286-93, 1998.

F. Miyagawa, Y. Tanaka, S. Yamashita, B. Mikami, K. Danno et al., Essential Contribution of Germline-Encoded Lysine Residues in J??1.2 Segment to the Recognition of Nonpeptide Antigens by Human ???? T Cells, The Journal of Immunology, vol.167, issue.12, pp.6773-6782, 2001.
DOI : 10.4049/jimmunol.167.12.6773

S. Yamashita, Y. Tanaka, M. Harazaki, B. Mikami, and N. Minato, Recognition mechanism of non-peptide antigens by human ???? T cells, International Immunology, vol.15, issue.11, pp.1301-1308, 2003.
DOI : 10.1093/intimm/dxg129

C. Morita, C. Jin, G. Sarikonda, and H. Wang, Nonpeptide antigens, presentation mechanisms, and immunological memory of human V??2V??2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens, Immunological Reviews, vol.151, issue.16, pp.59-76, 2007.
DOI : 10.1002/eji.1830220506

C. Morita, E. Beckman, J. Bukowski, Y. Tanaka, H. Band et al., Direct presentation of nonpeptide prenyl pyrophosphate antigens to human ???? T cells, Immunity, vol.3, issue.4, pp.495-507, 1995.
DOI : 10.1016/1074-7613(95)90178-7

F. Lang, M. Peyrat, P. Constant, F. Davodeau, J. David-ameline et al., Early activation of human V gamma 9V delta 2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands, J Immunol, issue.11, pp.1545986-94, 1995.

Y. Kato, Y. Tanaka, H. Tanaka, S. Yamashita, and N. Minato, Requirement of Species-Specific Interactions for the Activation of Human ???? T Cells by Pamidronate, The Journal of Immunology, vol.170, issue.7, pp.3608-3621, 2003.
DOI : 10.4049/jimmunol.170.7.3608

Y. Kato, Y. Tanaka, M. Hayashi, K. Okawa, and N. Minato, Involvement of CD166 in the Activation of Human ????T Cells by Tumor Cells Sensitized with Nonpeptide Antigens, The Journal of Immunology, vol.177, issue.2, pp.877-84, 2006.
DOI : 10.4049/jimmunol.177.2.877

H. Wei, D. Huang, X. Lai, M. Chen, W. Zhong et al., Definition of APC Presentation of Phosphoantigen (E)-4-Hydroxy-3-methyl-but-2-enyl Pyrophosphate to V??2V??2 TCR, The Journal of Immunology, vol.181, issue.7, pp.4798-806, 2008.
DOI : 10.4049/jimmunol.181.7.4798

C. Harly, Y. Guillaume, S. Nedellec, C. Peigne, H. Monkkonen et al., Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human ???? T-cell subset, Blood, vol.120, issue.11, pp.2269-79, 2012.
DOI : 10.1182/blood-2012-05-430470

F. Riano, M. Karunakaran, L. Starick, J. Li, C. Scholz et al., ) and additional genes on human chromosome 6, European Journal of Immunology, vol.21, issue.9, pp.2571-2577, 2014.
DOI : 10.1002/eji.201444712

H. Wang, Z. Fang, and C. Morita, V??2V??2 T Cell Receptor Recognition of Prenyl Pyrophosphates Is Dependent on All CDRs, The Journal of Immunology, vol.184, issue.11, pp.6209-6231, 2010.
DOI : 10.4049/jimmunol.1000231

G. Sarikonda, H. Wang, K. Puan, X. Liu, H. Lee et al., Photoaffinity Antigens for Human ???? T Cells, The Journal of Immunology, vol.181, issue.11, pp.7738-50, 2008.
DOI : 10.4049/jimmunol.181.11.7738

C. Hsiao, X. Lin, R. Barney, R. Shippy, J. Li et al., Synthesis of a Phosphoantigen Prodrug that Potently Activates V??9V??2 T-Lymphocytes, Chemistry & Biology, vol.21, issue.8, pp.945-54, 2014.
DOI : 10.1016/j.chembiol.2014.06.006

J. Bukowski, C. Morita, and M. Brenner, Human ???? T Cells Recognize Alkylamines Derived from Microbes, Edible Plants, and Tea, Immunity, vol.11, issue.1, pp.57-65, 1999.
DOI : 10.1016/S1074-7613(00)80081-3

URL : http://doi.org/10.1016/s1074-7613(00)80081-3

K. Thompson, J. Rojas-navea, and M. Rogers, Alkylamines cause V??9V??2 T-cell activation and proliferation by inhibiting the mevalonate pathway, Blood, vol.107, issue.2, pp.651-655, 2006.
DOI : 10.1182/blood-2005-03-1025

H. Arnett and J. Viney, Immune modulation by butyrophilins, Nature Reviews Immunology, vol.7, issue.8, pp.559-69, 2014.
DOI : 10.1038/nri3715

H. Arnett, S. Escobar, and J. Viney, Regulation of costimulation in the era of butyrophilins, Cytokine, vol.46, issue.3, pp.370-375, 2009.
DOI : 10.1016/j.cyto.2009.03.009

S. Ogg, A. Weldon, L. Dobbie, A. Smith, and I. Mather, Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets, Proceedings of the National Academy of Sciences, vol.101, issue.27, pp.10084-10093, 2004.
DOI : 10.1073/pnas.0402930101

J. Jeong, A. Rao, J. Xu, S. Ogg, Y. Hathout et al., The PRY/SPRY/B30.2 Domain of Butyrophilin 1A1 (BTN1A1) Binds to Xanthine Oxidoreductase: IMPLICATIONS FOR THE FUNCTION OF BTN1A1 IN THE MAMMARY GLAND AND OTHER TISSUES, Journal of Biological Chemistry, vol.284, issue.33, pp.22444-56, 2009.
DOI : 10.1074/jbc.M109.020446

I. Smith, B. Knezevic, J. Ammann, D. Rhodes, D. Aw et al., BTN1A1, the Mammary Gland Butyrophilin, and BTN2A2 Are Both Inhibitors of T Cell Activation, The Journal of Immunology, vol.184, issue.7, pp.3514-3539, 2010.
DOI : 10.4049/jimmunol.0900416

H. Yamashiro, S. Yoshizaki, T. Tadaki, K. Egawa, and N. Seo, Stimulation of human butyrophilin 3 molecules results in negative regulation of cellular immunity, Journal of Leukocyte Biology, vol.88, issue.4, pp.757-67, 2010.
DOI : 10.1189/jlb.0309156

J. Cubillos-ruiz, D. Martinez, U. Scarlett, M. Rutkowski, Y. Nesbeth et al., CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells, Oncotarget, vol.1, issue.5, pp.329-367, 2010.
DOI : 10.18632/oncotarget.165

R. Simone, B. Barbarat, A. Rabellino, G. Icardi, M. Bagnasco et al., Ligation of the BT3 molecules, members of the B7 family, enhance the proinflammatory responses of human monocytes and monocyte-derived dendritic cells, Molecular Immunology, vol.48, issue.1-3, pp.109-127, 2010.
DOI : 10.1016/j.molimm.2010.09.005

N. Messal, E. Mamessier, A. Sylvain, J. Celis-gutierrez, M. Thibult et al., Differential role for CD277 as a co-regulator of the immune signal in T and NK cells, European Journal of Immunology, vol.86, issue.12, pp.3443-54, 2011.
DOI : 10.1002/eji.201141404

URL : https://hal.archives-ouvertes.fr/inserm-00620920

D. Rhodes, M. Stammers, G. Malcherek, S. Beck, and J. Trowsdale, The Cluster of BTN Genes in the Extended Major Histocompatibility Complex, Genomics, vol.71, issue.3, pp.351-62, 2000.
DOI : 10.1006/geno.2000.6406

E. Compte, P. Pontarotti, Y. Collette, M. Lopez, and D. Olive, Frontline: Characterization of BT3 molecules belonging to the B7 family expressed on immune cells, European Journal of Immunology, vol.34, issue.8, pp.2089-99, 2004.
DOI : 10.1002/eji.200425227

A. Palakodeti, A. Sandstrom, L. Sundaresan, C. Harly, S. Nedellec et al., The Molecular Basis for Modulation of Human V??9V??2 T Cell Responses by CD277/Butyrophilin-3 (BTN3A)-specific Antibodies, Journal of Biological Chemistry, vol.287, issue.39, pp.32780-90, 2012.
DOI : 10.1074/jbc.M112.384354

M. Karunakaran, T. Gobel, L. Starick, L. Walter, and T. Herrmann, V??9 and V??2 T cell antigen receptor genes and butyrophilin 3 (BTN3) emerged with placental mammals and are concomitantly preserved in selected species like alpaca (Vicugna pacos), Immunogenetics, vol.2, issue.9, pp.243-54, 2014.
DOI : 10.1007/s00251-014-0763-8

S. Vavassori, A. Kumar, G. Wan, G. Ramanjaneyulu, M. Cavallari et al., Butyrophilin 3A1 binds phosphorylated antigens and stimulates human ???? T cells, Nature Immunology, vol.87, issue.9, pp.908-924, 2013.
DOI : 10.1158/0008-5472.CAN-06-3069

A. Sandstrom, C. Peigne, A. Leger, J. Crooks, F. Konczak et al., The Intracellular B30.2 Domain of Butyrophilin 3A1 Binds Phosphoantigens to Mediate Activation of Human V??9V??2??T Cells, Immunity, vol.40, issue.4, pp.490-500, 2014.
DOI : 10.1016/j.immuni.2014.03.003

H. Wang, O. Henry, M. Distefano, Y. Wang, J. Raikkonen et al., Butyrophilin 3A1 Plays an Essential Role in Prenyl Pyrophosphate Stimulation of Human V??2V??2 T Cells, The Journal of Immunology, vol.191, issue.3, pp.1029-1071, 2013.
DOI : 10.4049/jimmunol.1300658

E. Decaup, C. Duault, C. Bezombes, M. Poupot, A. Savina et al., Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRV??9+ ???? T lymphocytes, Immunology Letters, vol.161, issue.1, pp.133-140, 2014.
DOI : 10.1016/j.imlet.2014.05.011

M. Ginsberg, X. Du, and E. Plow, Inside-out integrin signalling, Current Opinion in Cell Biology, vol.4, issue.5, pp.766-7110, 1992.
DOI : 10.1016/0955-0674(92)90099-X

P. Fisch, M. Malkovsky, S. Kovats, E. Sturm, E. Braakman et al., Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt's lymphoma cells, Science, vol.250, issue.4985, pp.1269-73, 1990.
DOI : 10.1126/science.1978758

C. Rust and F. Koning, ???? T cell reactivity towards bacterial superantigens, Seminars in Immunology, vol.5, issue.1, pp.41-47, 1993.
DOI : 10.1006/smim.1993.1006

R. Sciammas and J. Bluestone, HSV-1 glycoprotein I-reactive TCR gamma delta cells directly recognize the peptide backbone in a conformationally dependent manner, J Immunol, issue.10, pp.1615187-92, 1998.

Y. Kong, W. Cao, X. Xi, C. Ma, L. Cui et al., The NKG2D ligand ULBP4 binds to TCR??9/??2 and induces cytotoxicity to tumor cells through both TCR???? and NKG2D, Blood, vol.114, issue.2, pp.310-317, 2008.
DOI : 10.1182/blood-2008-12-196287

H. Chen, X. He, Z. Wang, D. Wu, H. Zhang et al., Identification of Human T Cell Receptor ????-recognized Epitopes/Proteins via CDR3?? Peptide-based Immunobiochemical Strategy, Journal of Biological Chemistry, vol.283, issue.18, pp.12528-12565, 2008.
DOI : 10.1074/jbc.M708067200

I. Kaur, S. Voss, R. Gupta, K. Schell, P. Fisch et al., Human peripheral gamma delta T cells recognize hsp60 molecules on Daudi Burkitt's lymphoma cells, J Immunol, vol.150, issue.5, pp.2046-55, 1993.

P. Vantourout, L. Martinez, A. Fabre, X. Collet, and E. Champagne, Ecto-F1-ATPase and MHC-class I close association on cell membranes, Molecular Immunology, vol.45, issue.2, pp.485-92, 2008.
DOI : 10.1016/j.molimm.2007.05.026

URL : https://hal.archives-ouvertes.fr/inserm-00150459

J. Mookerjee-basu, P. Vantourout, L. Martinez, B. Perret, X. Collet et al., F1-Adenosine Triphosphatase Displays Properties Characteristic of an Antigen Presentation Molecule for V??9V??2 T Cells, The Journal of Immunology, vol.184, issue.12, pp.6920-6928, 2010.
DOI : 10.4049/jimmunol.0904024

C. Spencer, G. Abate, A. Blazevic, and D. Hoft, Only a Subset of Phosphoantigen-Responsive ??9??2 T Cells Mediate Protective Tuberculosis Immunity, The Journal of Immunology, vol.181, issue.7, pp.4471-84, 2008.
DOI : 10.4049/jimmunol.181.7.4471

X. Xi, X. Zhang, B. Wang, J. Wang, H. Huang et al., A novel strategy to screen bacillus Calmette-Guerin protein antigen recognized by gammadelta TCR, PLoS One, vol.6, issue.4, 2011.

X. Xi, X. Han, L. Li, and Z. Zhao, Identification of a New Tuberculosis Antigen Recognized by ???? T Cell Receptor, Clinical and Vaccine Immunology, vol.20, issue.4, pp.530-539, 2013.
DOI : 10.1128/CVI.00584-12

A. Thedrez, C. Sabourin, J. Gertner, M. Devilder, S. Allain-maillet et al., Self/non-self discrimination by human ???? T cells: simple solutions for a complex issue?, Immunological Reviews, vol.153, issue.1, pp.123-158, 2007.
DOI : 10.1182/blood-2004-01-0331

S. Amslinger, S. Hecht, F. Rohdich, W. Eisenreich, P. Adam et al., Stimulation of V??9/V??2 T-lymphocyte proliferation by the isoprenoid precursor, (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate, Immunobiology, vol.212, issue.1, pp.47-55, 2007.
DOI : 10.1016/j.imbio.2006.08.003