J. Brenton, Rethinking ovarian cancer: recommendations for improving outcomes, Nat Rev Cancer, vol.11, pp.719-725, 2011.

A. Jemal, F. Bray, M. Center, J. Ferlay, E. Ward et al., Global cancer statistics, CA: A Cancer Journal for Clinicians, vol.82, issue.19 suppl, pp.69-90, 2011.
DOI : 10.3322/caac.20107

P. Della and S. Banerjee, Bevacizumab in combination with chemotherapy in platinum-sensitive ovarian cancer, Onco. Targets. Ther, vol.7, pp.1025-1032, 2014.

H. Huang, Incorporation of bevacizumab in the primary treatment of ovarian cancer, N Engl J Med, vol.365, pp.2473-2483, 2011.

T. Perren, A. Swart, J. Pfisterer, J. Ledermann, E. Pujade-lauraine et al., A Phase 3 Trial of Bevacizumab in Ovarian Cancer, New England Journal of Medicine, vol.365, issue.26, pp.2484-2496, 2011.
DOI : 10.1056/NEJMoa1103799

E. Pujade-lauraine, F. Hilpert, B. Weber, A. Reuss, A. Poveda et al., Bevacizumab Combined With Chemotherapy for Platinum-Resistant Recurrent Ovarian Cancer: The AURELIA Open-Label Randomized Phase III Trial, Journal of Clinical Oncology, vol.32, issue.13, pp.1302-1308, 2014.
DOI : 10.1200/JCO.2013.51.4489

B. Kaufman, R. Shapira-frommer, R. Schmutzler, M. Audeh, M. Friedlander et al., Mutation, Journal of Clinical Oncology, vol.33, issue.3, pp.244-250, 2015.
DOI : 10.1200/JCO.2014.56.2728

URL : https://hal.archives-ouvertes.fr/hal-00790211

J. Coward, K. Middleton, and F. Murphy, New perspectives on targeted therapy in ovarian cancer, International Journal of Women's Health, vol.7, pp.189-203, 2015.
DOI : 10.2147/IJWH.S52379

D. Bartel, MicroRNAs: Target Recognition and Regulatory Functions, Cell, vol.136, issue.2, pp.215-233, 2009.
DOI : 10.1016/j.cell.2009.01.002

URL : http://doi.org/10.1016/j.cell.2009.01.002

J. Hayes, P. Peruzzi, and S. Lawler, MicroRNAs in cancer: biomarkers, functions and therapy, Trends in Molecular Medicine, vol.20, issue.8, pp.460-469, 2014.
DOI : 10.1016/j.molmed.2014.06.005

P. Juin, O. Geneste, F. Gautier, S. Depil, and M. Campone, Decoding and unlocking theBCL-2 dependency of cancer cells, Nat Rev Cancer, vol.7, pp.455-465, 2013.

E. Brotin, M. Meryet-figuière, K. Simonin, R. Duval, M. Villedieu et al., Bcl-xL and MCL-1 constitute pertinent targets in ovarian carcinoma and their concomitant inhibition is sufficient to induce apoptosis, Int J Cancer, vol.126, pp.885-895, 2010.

K. Simonin, E. Brotin, S. Dufort, S. Dutoit, D. Goux et al., Mcl-1 is an important determinant of the apoptotic response to the BH3-mimetic molecule HA14-1 in cisplatin-resistant ovarian carcinoma cells, Molecular Cancer Therapeutics, vol.8, issue.11, pp.3162-3170, 2009.
DOI : 10.1158/1535-7163.MCT-09-0493

C. Denoyelle, B. Lambert, M. Meryet-figuière, N. Vigneron, E. Brotin et al., miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation, Cell Death and Disease, vol.1411, issue.10, p.1445, 2014.
DOI : 10.1373/clinchem.2008.112797

H. Nakano, T. Miyazawa, K. Kinoshita, Y. Yamada, and T. Yoshida, Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-XL in colorectal cancer cells, International Journal of Cancer, vol.27, issue.5, pp.1072-1080, 2010.
DOI : 10.1002/ijc.25143

R. Guo, Y. Wang, W. Shi, B. Liu, S. Hou et al., MicroRNA miR-491-5p Targeting both TP53 and Bcl-XL Induces Cell Apoptosis in SW1990 Pancreatic Cancer Cells through Mitochondria Mediated Pathway, Molecules, vol.17, issue.12, pp.14733-14747, 2012.
DOI : 10.3390/molecules171214733

X. Li, Y. Liu, K. Granberg, Q. Wang, L. Moore et al., Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma, Oncogene, vol.67, issue.13, 2014.
DOI : 10.1038/onc.2014.98

L. Lam, X. Lu, H. Zhang, R. Lesniewski, S. Rosenberg et al., A MicroRNA Screen to Identify Modulators of Sensitivity to BCL2 Inhibitor ABT-263 (Navitoclax), Molecular Cancer Therapeutics, vol.9, issue.11, pp.2943-2950, 2010.
DOI : 10.1158/1535-7163.MCT-10-0427

P. Linsley, J. Schelter, J. Burchard, M. Kibukawa, M. Martin et al., Transcripts Targeted by the MicroRNA-16 Family Cooperatively Regulate Cell Cycle Progression, Molecular and Cellular Biology, vol.27, issue.6, pp.2240-2252, 2007.
DOI : 10.1128/MCB.02005-06

S. Shahab, L. Matyunina, C. Hill, L. Wang, R. Mezencev et al., The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated, BMC Medical Genomics, vol.11, issue.8, p.33, 2012.
DOI : 10.1186/gb-2010-11-8-r90

A. Gurtan and P. Sharp, The Role of miRNAs in Regulating Gene Expression Networks, Journal of Molecular Biology, vol.425, issue.19, pp.3582-3600, 2013.
DOI : 10.1016/j.jmb.2013.03.007

V. Gennarino, D. Angelo, G. Dharmalingam, G. Fernandez, S. Russolillo et al., Identification of microRNA-regulated gene networks by expression analysis of target genes, Genome Research, vol.22, issue.6, pp.1163-1172, 2012.
DOI : 10.1101/gr.130435.111

URL : https://hal.archives-ouvertes.fr/hal-01126203

J. Tsang, M. Ebert, and A. Van-oudenaarden, Genome-wide Dissection of MicroRNA Functions and Cotargeting Networks Using Gene Set Signatures, Molecular Cell, vol.38, issue.1, pp.140-153, 2010.
DOI : 10.1016/j.molcel.2010.03.007

T. Hara, M. Jones, M. Subramanian, X. Li, O. Ou et al., Selective targeting of KRAS-Mutant cells by miR-126 through repression of multiple genes essential for the survival of KRAS-Mutant cells, Oncotarget, vol.5, issue.17, pp.7635-7650, 2014.
DOI : 10.18632/oncotarget.2284

A. Martinez-sanchez and C. Murphy, MicroRNA Target Identification???Experimental Approaches, Biology, vol.2, issue.1, pp.189-205, 2013.
DOI : 10.3390/biology2010189

URL : http://doi.org/10.3390/biology2010189

A. Lal, M. Thomas, G. Altschuler, F. Navarro, O. Day et al., Capture of MicroRNA???Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling, PLoS Genetics, vol.13, issue.11, p.1002363, 2011.
DOI : 10.1371/journal.pgen.1002363.s009

R. Garzon, G. Marcucci, and C. Croce, Targeting microRNAs in cancer: rationale, strategies and challenges, Nature Reviews Drug Discovery, vol.124, issue.10, pp.775-789, 2010.
DOI : 10.1038/nrd3179

S. Colombo, X. Zeng, H. Ragelle, and C. Foged, Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge, Expert Opinion on Drug Delivery, vol.14, issue.9, pp.1481-1495, 2014.
DOI : 10.1038/nature04303

D. Wheeler, E. Dunn, and P. Harari, Understanding resistance to EGFR inhibitors???impact on future treatment strategies, Nature Reviews Clinical Oncology, vol.6, issue.9, pp.493-507, 2010.
DOI : 10.1038/nrclinonc.2010.97

A. Kamal, S. Faazil, and M. Malik, Apoptosis-inducing agents: a patent review (2010 ??? 2013), Expert Opinion on Therapeutic Patents, vol.4, issue.3, pp.339-354, 2014.
DOI : 10.1016/j.bmc.2012.04.010

A. Jebahi, M. Villedieu, C. Pétigny-lechartier, E. Brotin, M. Louis et al., PI3K/mTOR dual inhibitor NVP-BEZ235 decreases Mcl-1 expression and sensitizes ovarian carcinoma cells to Bcl-xL-targeting strategies, provided that Bim expression is induced, Cancer Letters, vol.348, issue.1-2, pp.38-49, 2014.
DOI : 10.1016/j.canlet.2014.03.001

M. Lee, A. Ye, A. Gardino, A. Heijink, P. Sorger et al., Sequential Application of Anticancer Drugs Enhances Cell Death by Rewiring Apoptotic Signaling Networks, Cell, vol.149, issue.4, pp.780-794, 2012.
DOI : 10.1016/j.cell.2012.03.031