I. Bondia-pons, L. Ryan, and J. A. Martinez, Oxidative stress and inflammation interactions in human obesity, Journal of Physiology and Biochemistry, vol.59, issue.Pt 1, pp.701-711, 2012.
DOI : 10.1007/s13105-012-0154-2

N. K. Khoo, Obesity-induced tissue free radical generation: An in vivo immuno-spin trapping study, Free Radical Biology and Medicine, vol.52, issue.11-12, pp.11-12
DOI : 10.1016/j.freeradbiomed.2012.04.011

A. P. Rolo, J. S. Teodoro, and C. M. Palmeira, Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis, Free Radic, Biol. Med, vol.52, issue.1, pp.59-69, 2012.

A. B. Crujeiras, A. Diaz-lagares, M. C. Carreira, M. Amil, and F. F. Casanueva, Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer, Free Radical Research, vol.16, issue.4, pp.243-256, 2013.
DOI : 10.1016/S1470-2045(11)70030-4

L. Pouyet and A. Carrier, Mutant mouse models of oxidative stress, Transgenic Research, vol.34, issue.2, pp.155-164, 2010.
DOI : 10.1007/s11248-009-9308-6

S. C. Gupta, Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy, Antioxidants & Redox Signaling, vol.16, issue.11, pp.1295-1322, 2012.
DOI : 10.1089/ars.2011.4414

E. Elinav, Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms, Nature Reviews Cancer, vol.26, issue.11, pp.759-771, 2013.
DOI : 10.1038/nrc3611

P. Lonkar and P. C. Dedon, Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates, International Journal of Cancer, vol.48, issue.182, 2011.
DOI : 10.1002/ijc.25815

A. Carrier, Differential gene expression in CD3epsilon-and RAG1- deficient thymuses: definition of a set of genes potentially involved in thymocyte maturation, Immunogenetics, vol.50, issue.255, 1999.

A. Carrier, Chromosomal localization of two mouse genes encoding thymus-specific serine peptidase and thymus-expressed acidic protein, Immunogenetics, vol.51, issue.11, pp.984-986, 2000.
DOI : 10.1007/s002510000230

R. Tomasini, Molecular and functional characterization of the stressinduced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death, J. Biol. Chem, issue.47, pp.276-44185, 2001.

S. Okamura, p53DINP1, a p53-Inducible Gene, Regulates p53-Dependent Apoptosis, Molecular Cell, vol.8, issue.1, pp.85-94, 2001.
DOI : 10.1016/S1097-2765(01)00284-2

J. Nowak, Assignment of tumor protein p53 induced nuclear protein 1 (TP53INP1) gene to human chromosome band 8q22 by in situ hybridization, Cytogenetic and Genome Research, vol.97, issue.1-2, p.140, 2002.
DOI : 10.1159/000064049

J. Nowak, D. Depetris, J. L. Iovanna, M. G. Mattei, and M. J. Pebusque, Assignment of the tumor protein p53 induced nuclear protein 2 (TP53INP2) gene to human chromosome band 20q11.2 by in situ hybridization, Cytogenetic and Genome Research, vol.108, issue.4, 2005.
DOI : 10.1159/000081534

A. Sancho, DOR/Tp53inp2 and Tp53inp1 Constitute a Metazoan Gene Family Encoding Dual Regulators of Autophagy and Transcription, PLoS ONE, vol.297, issue.Pt 1, p.34034, 2012.
DOI : 10.1371/journal.pone.0034034.s003

B. G. Baumgartner, Identification of a Novel Modulator of Thyroid Hormone Receptor-Mediated Action, PLoS ONE, vol.22, issue.11, p.1183, 2007.
DOI : 10.1371/journal.pone.0001183.g008

M. Seillier, TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death, Cell Death and Differentiation, vol.8, issue.9, pp.1525-1535, 2012.
DOI : 10.1101/gad.2016111

M. Gironella, Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development, Proceedings of the National Academy of Sciences, vol.104, issue.41, pp.16170-16175, 2007.
DOI : 10.1073/pnas.0703942104

R. Tomasini, TP53INP1s and Homeodomain-interacting Protein Kinase-2 (HIPK2) Are Partners in Regulating p53 Activity, Journal of Biological Chemistry, vol.278, issue.39, pp.37722-37729, 2003.
DOI : 10.1074/jbc.M301979200

S. Peuget, T. Bonacci, P. Soubeyran, J. Iovanna, and N. J. Dusetti, Oxidative stressinduced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation, Cell Death Differ, vol.21, issue.7, 2014.

M. Seillier, Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1, EMBO Molecular Medicine, vol.7, issue.6, pp.802-818, 2015.
DOI : 10.15252/emmm.201404318

URL : https://hal.archives-ouvertes.fr/inserm-01270302

X. Zhao, Retinoic acid receptor-independent mechanism of apoptosis of melanoma cells by the retinoid CD437 (AHPN), Cell Death and Differentiation, vol.8, issue.9, 2001.
DOI : 10.1038/sj.cdd.4400894

N. Martinez, Transcriptional signature of Ecteinascidin 743 (Yondelis, Trabectedin) in human sarcoma cells explanted from chemo-naive patients, Molecular Cancer Therapeutics, vol.4, issue.5, 2005.
DOI : 10.1158/1535-7163.MCT-04-0316

P. H. Jiang, Y. Motoo, N. Sawabu, and T. Minamoto, Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells, World Journal of Gastroenterology, vol.12, issue.10, pp.1597-1602, 2006.
DOI : 10.3748/wjg.v12.i10.1597

H. Hernandez-vargas, Gene expression profiling of breast cancer cells in response to gemcitabine: NF-??B pathway activation as a potential mechanism of resistance, Breast Cancer Research and Treatment, vol.100, issue.1, pp.157-172, 2007.
DOI : 10.1007/s10549-006-9322-9

W. K. Low, S. W. Kong, and M. G. Tan, Ototoxicity from Combined Cisplatin and Radiation Treatment: An In Vitro Study, International Journal of Otolaryngology, vol.301, issue.1, 2010.
DOI : 10.1158/0008-5472.CAN-04-1581

M. Momeny, Arsenic trioxide induces apoptosis in NB-4, an acute promyelocytic leukemia cell line, through up-regulation of p73 via suppression of nuclear factor kappa B-mediated inhibition of p73 transcription and prevention of NF-kappaB-mediated induction of XIAP, BCL-XL and survivin, pp.833-842, 2010.

A. Brachat, A microarray-based, integrated approach to identify novel regulators of cancer drug response and apoptosis, Oncogene, vol.21, issue.54, pp.8361-8371, 2002.
DOI : 10.1038/sj.onc.1206016

J. W. Vanlandingham, N. M. Tassabehji, R. C. Somers, and C. W. Levenson, Expression Profiling of p53-Target Genes in Copper-Mediated Neuronal Apoptosis, NeuroMolecular Medicine, vol.7, issue.4, pp.311-324, 2005.
DOI : 10.1385/NMM:7:4:311

C. E. Cano, Tumor Protein 53-Induced Nuclear Protein 1 Is a Major Mediator of p53 Antioxidant Function, Cancer Research, vol.69, issue.1, pp.219-226, 2009.
DOI : 10.1158/0008-5472.CAN-08-2320

URL : https://hal.archives-ouvertes.fr/inserm-01270304

P. N. Guessan, Absence of Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibroblasts to Redox-Driven Apoptosis, Antioxidants & Redox Signaling, vol.15, issue.6, pp.1639-1653, 2011.
DOI : 10.1089/ars.2010.3553

URL : https://hal.archives-ouvertes.fr/inserm-01270303

S. Tachiiri, Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts, International Journal of Radiation Oncology*Biology*Physics, vol.64, issue.1, pp.272-279, 2006.
DOI : 10.1016/j.ijrobp.2005.08.030

E. Kis, Microarray analysis of radiation response genes in primary human fibroblasts, International Journal of Radiation Oncology*Biology*Physics, vol.66, issue.5, pp.1506-1514, 2006.
DOI : 10.1016/j.ijrobp.2006.08.004

P. H. Jiang, Tumor protein p53-induced nuclear protein 1 (TP53INP1) in spontaneous chronic pancreatitis in the WBN/Kob rat: drug effects on its expression in the pancreas, J. Pancreas, vol.5, issue.4, pp.205-216, 2004.

E. S. Han, The in vivo gene expression signature of oxidative stress, Physiological Genomics, vol.34, issue.1, pp.112-126, 2008.
DOI : 10.1152/physiolgenomics.00239.2007

K. Ishii, The Trp53-Trp53inp1-Tnfrsf10b Pathway Regulates the Radiation Response of Mouse Spermatogonial Stem Cells, Stem Cell Reports, vol.3, issue.4, pp.676-689, 2014.
DOI : 10.1016/j.stemcr.2014.08.006

K. Ogawa, M. Asamoto, S. Suzuki, K. Tsujimura, and T. Shirai, Downregulation of apoptosis revealed by laser microdissection and cDNA microarray analysis of related genes in rat liver preneoplastic lesions, Medical Molecular Morphology, vol.38, issue.1, pp.23-29, 2005.
DOI : 10.1007/s00795-004-0265-0

T. Saati, Oxidative stress induced by inactivation of TP53INP1 cooperates with KrasG12D to initiate and promote pancreatic carcinogenesis in the murine pancreas, Am. J. Pathol, vol.182, issue.6, 2013.

J. Gommeaux, Colitis and Colitis-Associated Cancer Are Exacerbated in Mice Deficient for Tumor Protein 53-Induced Nuclear Protein 1, Molecular and Cellular Biology, vol.27, issue.6, pp.2215-2228, 2007.
DOI : 10.1128/MCB.01454-06

URL : https://hal.archives-ouvertes.fr/hal-00145430

K. T. Bieging, S. S. Mello, and L. D. Attardi, Unravelling mechanisms of p53-mediated tumour suppression, Nature Reviews Cancer, vol.60, issue.5, 2014.
DOI : 10.1038/onc.2009.423

S. Giusiano, TP53INP1 as new therapeutic target in castration-resistant prostate cancer, The Prostate, vol.93, issue.12, pp.1286-1294, 2011.
DOI : 10.1002/pros.22477

R. Tomasini, P53-dependent expression of the stress-induced protein (SIP), Eur, J. Cell Biol, vol.81, issue.5, 2002.

G. D. Orazi, Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis, Nat. Cell Biol, vol.4, issue.11, 2002.

T. G. Hofmann, Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2, Nature Cell Biology, vol.4, issue.1, pp.1-10, 2002.
DOI : 10.1038/ncb715

K. Oda, p53AIP1, a Potential Mediator of p53-Dependent Apoptosis, and Its Regulation by Ser-46-Phosphorylated p53, Cell, vol.102, issue.6, pp.849-862, 2000.
DOI : 10.1016/S0092-8674(00)00073-8

K. Yoshida, H. Liu, and Y. Miki, Protein Kinase C ?? Regulates Ser46 Phosphorylation of p53 Tumor Suppressor in the Apoptotic Response to DNA Damage, Journal of Biological Chemistry, vol.281, issue.9, pp.5734-5740, 2006.
DOI : 10.1074/jbc.M512074200

R. Tomasini, TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity, Oncogene, vol.404, issue.55, pp.8093-8104, 2005.
DOI : 10.1038/sj.onc.1208951

T. Hershko, M. Chaussepied, M. Oren, and D. Ginsberg, Novel link between E2F and p53: proapoptotic cofactors of p53 are transcriptionally upregulated by E2F, Cell Death and Differentiation, vol.12, issue.4, 2005.
DOI : 10.1038/sj.cdd.4401575

M. V. Bernardo, E. Yelo, L. Gimeno, J. A. Campillo, and A. Parrado, Identification of apoptosis-related PLZF target genes, Biochemical and Biophysical Research Communications, vol.359, issue.2, pp.317-322, 2007.
DOI : 10.1016/j.bbrc.2007.05.085

S. Visser and X. Yang, Identification of LATS transcriptional targets in HeLa cells using whole human genome oligonucleotide microarray, Gene, vol.449, issue.1-2, pp.22-29, 2010.
DOI : 10.1016/j.gene.2009.09.008

E. Bell, J. Lunec, and D. A. Tweddle, Cell Cycle Regulation Targets of MYCN Identified by Gene Expression Microarrays, Cell Cycle, vol.6, issue.10, pp.1249-1256, 2007.
DOI : 10.4161/cc.6.10.4222

L. Chevrier, A. C. Meunier, S. Cochaud, J. M. Muller, and C. Chadeneau, Vasoactive intestinal peptide decreases MYCN expression and synergizes with retinoic acid in a human MYCN-amplified neuroblastoma cell line, Int. J. Oncol, vol.33, issue.5, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00425047

J. Shahbazi, Histone deacetylase 2 and N-Myc reduce p53 protein phosphorylation at serine 46 by repressing gene transcription of tumor protein 53-induced nuclear protein 1, Oncotarget, vol.5, issue.12, pp.4257-4268, 2014.
DOI : 10.18632/oncotarget.1991

T. D. Palma, Pax8 has a critical role in epithelial cell survival and proliferation, Cell Death and Disease, vol.6, issue.7, pp.4-729, 2013.
DOI : 10.1016/j.ejca.2010.11.008

M. Van-keimpema, FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-??B to promote survival of human B cells, Blood, vol.124, issue.23, pp.3431-3440, 2014.
DOI : 10.1182/blood-2014-01-553412

W. Weng, c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma, Biochemical and Biophysical Research Communications, vol.405, issue.2, pp.278-284, 2011.
DOI : 10.1016/j.bbrc.2011.01.028

M. Seux, TP53INP1 decreases pancreatic cancer cell migration by regulating SPARC expression, Oncogene, vol.281, issue.27, pp.3049-3061, 2011.
DOI : 10.1038/onc.2011.25

F. Liu, X. Kong, L. Lv, and J. Gao, MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal, FEBS Letters, vol.11, issue.4, pp.500-506, 2015.
DOI : 10.1016/j.febslet.2015.01.009

F. Liu, X. Kong, L. Lv, and J. Gao, TGF-??1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial???mesenchymal transition and cancer stem cell phenotypes, Cancer Letters, vol.359, issue.2, pp.288-298, 2015.
DOI : 10.1016/j.canlet.2015.01.030

S. Ma, miR-130b Promotes CD133+ Liver Tumor-Initiating Cell Growth and Self-Renewal via Tumor Protein 53-Induced Nuclear Protein 1, Cell Stem Cell, vol.7, issue.6, pp.694-707, 2010.
DOI : 10.1016/j.stem.2010.11.010

M. Bousquet, D. Nguyen, C. Chen, L. Shields, and H. F. Lodish, MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA, Haematologica, vol.97, issue.11, pp.1713-1721, 2012.
DOI : 10.3324/haematol.2011.061515

P. A. Apostolidis, S. Lindsey, W. M. Miller, and E. T. Papoutsakis, Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation, Physiological Genomics, vol.44, issue.12, pp.638-650, 2012.
DOI : 10.1152/physiolgenomics.00028.2012

N. Garg, microRNA-17-92 cluster is a direct Nanog target and controls neural stem cell through Trp53inp1, The EMBO Journal, vol.24, issue.21, pp.2819-2832, 2013.
DOI : 10.1083/jcb.200801009

M. T. Le, Conserved Regulation of p53 Network Dosage by MicroRNA???125b Occurs through Evolving miRNA???Target Gene Pairs, PLoS Genetics, vol.1, issue.303, p.1002242, 2011.
DOI : 10.1371/journal.pgen.1002242.s002

K. R. Parzych and D. J. Klionsky, An Overview of Autophagy: Morphology, Mechanism, and Regulation, Antioxidants & Redox Signaling, vol.20, issue.3, 2014.
DOI : 10.1089/ars.2013.5371

R. Singh and A. M. Cuervo, Autophagy in the Cellular Energetic Balance, Cell Metabolism, vol.13, issue.5, pp.495-504, 2011.
DOI : 10.1016/j.cmet.2011.04.004

B. F. Voight, Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis, Nature Genetics, vol.37, issue.7, pp.579-589, 2010.
DOI : 10.1038/ng.609

M. K. Andersen, Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes, Diabetologia, vol.303, issue.9, 2014.
DOI : 10.1007/s00125-014-3287-8

S. Cauchi, European genetic variants associated with type 2 diabetes in North African Arabs, Diabetes & Metabolism, vol.38, issue.4, pp.316-323, 2012.
DOI : 10.1016/j.diabet.2012.02.003

V. Kameswaran, Epigenetic Regulation of the DLK1-MEG3 MicroRNA Cluster in Human Type 2 Diabetic Islets, Cell Metabolism, vol.19, issue.1, pp.135-145, 2014.
DOI : 10.1016/j.cmet.2013.11.016

T. Nielsen, Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release, Diabetologia, vol.54, issue.5, 2011.

Y. Zhou, Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway, Human Molecular Genetics, vol.21, issue.1, 2012.
DOI : 10.1093/hmg/ddr454

V. Escott-price, Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease, PLoS ONE, vol.32, issue.6, p.94661, 2014.
DOI : 10.1371/journal.pone.0094661.s019

A. Jovicic, J. F. Zaldivar-jolissaint, R. Moser, S. S. Mde, F. Luthi-carter et al., MicroRNA-22 (miR-22) Overexpression Is Neuroprotective via General Anti-Apoptotic Effects and May also Target Specific Huntington???s Disease-Related Mechanisms, PLoS ONE, vol.11, issue.1, p.54222, 2013.
DOI : 10.1371/journal.pone.0054222.g007

Y. Ito, Decreased expression of tumor protein p53-induced nuclear protein 1 (TP53INP1) in breast carcinoma, Anticancer Res, vol.26, issue.6B, pp.4391-4395, 2006.

P. H. Jiang, Down-expression of tumor protein p53-induced nuclear protein 1 in human gastric cancer, World Journal of Gastroenterology, vol.12, issue.5, pp.691-696, 2006.
DOI : 10.3748/wjg.v12.i5.691

V. M. Zohrabian, Gene expression profiling of metastatic brain cancer, Oncology Reports, vol.18, issue.2, pp.321-328, 2007.
DOI : 10.3892/or.18.2.321

V. F. Bonazzi, D. Irwin, and N. K. Hayward, Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma, Genes, Chromosomes and Cancer, vol.12, issue.1, 2009.
DOI : 10.1002/gcc.20615

H. Shibuya, H. Iinuma, R. Shimada, A. Horiuchi, and T. Watanabe, Clinicopathological and Prognostic Value of MicroRNA-21 and MicroRNA-155 in Colorectal Cancer, Oncology, vol.79, issue.3-4, pp.3-4, 2010.
DOI : 10.1159/000323283

M. He, The combination of TP53INP1, TP53INP2 and AXIN2: potential biomarkers in papillary thyroid carcinoma, Endocrine, vol.45, issue.3, pp.2015-712
DOI : 10.1007/s12020-014-0341-8

Y. Ito, High level of tumour protein p53-induced nuclear protein 1 (TP53INP1) expression in anaplastic carcinoma of the thyroid, Pathology, vol.38, issue.6, pp.545-547, 2006.
DOI : 10.1080/00313020601024094

D. Taieb, Tumor Protein p53-Induced Nuclear Protein (TP53INP1) Expression in Medullary Thyroid Carcinoma: A Molecular Guide to the Optimal Extent of Surgery?, World Journal of Surgery, vol.93, issue.4, pp.830-835, 2010.
DOI : 10.1007/s00268-010-0395-6

V. Gandemer, Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia, BMC Genomics, vol.8, issue.1, 2007.
DOI : 10.1186/1471-2164-8-385

URL : https://hal.archives-ouvertes.fr/hal-01068393

S. Giusiano, TP53INP1 overexpression in prostate cancer correlates with poor prognostic factors and is predictive of biological cancer relapse, The Prostate, vol.97, issue.2, pp.117-128, 2011.
DOI : 10.1002/pros.21412

Y. Wang, M. N. Scheiber, C. Neumann, G. A. Calin, and D. Zhou, MicroRNA Regulation of Ionizing Radiation-Induced Premature Senescence, International Journal of Radiation Oncology*Biology*Physics, vol.81, issue.3, pp.839-848, 2011.
DOI : 10.1016/j.ijrobp.2010.09.048

Y. Saito, Overexpression of miR-142-5p and miR-155 in Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma Resistant to Helicobacter pylori Eradication, PLoS ONE, vol.438, issue.19, p.47396, 2012.
DOI : 10.1371/journal.pone.0047396.t002

C. M. Zhang, J. Zhao, and H. Y. Deng, MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1, Journal of Biomedical Science, vol.20, issue.1, 2013.
DOI : 10.1073/pnas.0707715105

C. Zhang, J. Zhao, and H. Deng, 17??-Estradiol up-regulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells, Molecular and Cellular Biochemistry, vol.26, issue.1-2, pp.201-211, 2013.
DOI : 10.1007/s11010-013-1642-6

J. Zhang, microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma, Int. J. Clin. Exp. Pathol, vol.7, issue.2, pp.602-610, 2014.

M. Mehrotra, Identification of putative pathogenic microRNA and its downstream targets in anaplastic lymphoma kinase???negative anaplastic large cell lymphoma, Human Pathology, vol.45, issue.10, 2014.
DOI : 10.1016/j.humpath.2014.06.012

M. L. Yeung, Roles for MicroRNAs, miR-93 and miR-130b, and Tumor Protein 53-Induced Nuclear Protein 1 Tumor Suppressor in Cell Growth Dysregulation by Human T-Cell Lymphotrophic Virus 1, Cancer Research, vol.68, issue.21, pp.8976-8985, 2008.
DOI : 10.1158/0008-5472.CAN-08-0769

Y. Enomoto, E??/miR-125b transgenic mice develop lethal B-cell malignancies, Leukemia, vol.96, issue.12, pp.1849-1856, 2011.
DOI : 10.1038/nature09284

F. Jiang, MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo, BMC Cancer, vol.7, issue.6, p.11425, 2011.
DOI : 10.1016/j.stem.2010.11.010

Q. Wei, Y. X. Li, M. Liu, X. Li, and H. Tang, MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells, IUBMB Life, vol.2, issue.8, pp.697-704, 2012.
DOI : 10.1002/iub.1051

M. Wang, miR-17-5p/20a are important markers for gastric cancer and murine double minute 2 participates in their functional regulation, European Journal of Cancer, vol.49, issue.8, 2013.
DOI : 10.1016/j.ejca.2012.12.017

R. Bomben, The miR-17???92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes, Leukemia, vol.107, issue.7, pp.1584-1593, 2012.
DOI : 10.1182/blood-2010-05-284984

Y. Zhang, A novel epigenetic CREB-miR-373 axis mediates ZIP4-induced pancreatic cancer growth, EMBO Molecular Medicine, vol.9, issue.9, pp.1322-1334, 2013.
DOI : 10.1002/emmm.201302507

R. Yuan, Upregulated expression of miR-106a by DNA hypomethylation plays an oncogenic role in hepatocellular carcinoma, Tumor Biology, vol.137, issue.6, pp.3093-3100, 2015.
DOI : 10.1016/j.cell.2009.04.021

J. Qin, M. Luo, H. Qian, and W. Chen, Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1, Gene, vol.538, issue.2, pp.342-347, 2014.
DOI : 10.1016/j.gene.2013.12.043

E. M. Cramer, Y. Shao, Y. Wang, and Y. Yuan, miR-190 is upregulated in Epstein???Barr Virus type I latency and modulates cellular mRNAs involved in cell survival and viral reactivation, Virology, vol.464, issue.465, pp.464-465
DOI : 10.1016/j.virol.2014.06.029

P. Chaluvally-raghavan, Copy Number Gain of hsa-miR-569 at 3q26.2 Leads to Loss of TP53INP1 and Aggressiveness of Epithelial Cancers, Cancer Cell, vol.26, issue.6, pp.863-879, 2014.
DOI : 10.1016/j.ccell.2014.10.010

F. Gao and W. Wang, MicroRNA-96 promotes the proliferation of colorectal cancer cells and targets tumor protein p53 inducible nuclear protein??????1, forkhead box protein O1 (FOXO1) and FOXO3a, Molecular Medicine Reports, vol.11, issue.2, pp.2015-1200
DOI : 10.3892/mmr.2014.2854