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Abstract

Background: Inflammatory breast cancer (IBC) is the most rare and aggressive variant of breast cancer (BC);
however, only a limited number of specific gene signatures with low generalization abilities are available and few
reliable biomarkers are helpful to improve IBC classification into a molecularly distinct phenotype. We applied a
network-based strategy to gain insight into master regulators (MRs) linked to IBC pathogenesis.

Methods: In-silico modeling and Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) on IBC/
non-IBC (nIBC) gene expression data (n = 197) was employed to identify novel master regulators connected to the
IBC phenotype. Pathway enrichment analysis was used to characterize predicted targets of candidate genes. The
expression pattern of the most significant MRs was then evaluated by immunohistochemistry (IHC) in two
independent cohorts of IBCs (n = 39) and nIBCs (n = 82) and normal breast tissues (n = 15) spotted on tissue
microarrays. The staining pattern of non-neoplastic mammary epithelial cells was used as a normal control.

Results: Using in-silico modeling of network-based strategy, we identified three top enriched MRs (NFAT5, CTNNB1
or β-catenin, and MGA) strongly linked to the IBC phenotype. By IHC assays, we found that IBC patients displayed
a higher number of NFAT5-positive cases than nIBC (69.2% vs. 19.5%; p-value = 2.79 10-7). Accordingly, the majority
of NFAT5-positive IBC samples revealed an aberrant nuclear expression in comparison with nIBC samples (70% vs.
12.5%; p-value = 0.000797). NFAT5 nuclear accumulation occurs regardless of WNT/β-catenin activated signaling in a
substantial portion of IBCs, suggesting that NFAT5 pathway activation may have a relevant role in IBC pathogenesis.
Accordingly, cytoplasmic NFAT5 and membranous β-catenin expression were preferentially linked to nIBC, accounting
for the better prognosis of this phenotype.

Conclusions: We provide evidence that NFAT-signaling pathway activation could help to identify aggressive forms of
BC and potentially be a guide to assignment of phenotype-specific therapeutic agents. The NFAT5 transcription factor
might be developed into routine clinical practice as a putative biomarker of IBC phenotype.
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Background
Inflammatory breast cancer (IBC) is a rare disease that
accounts approximately for 5% of breast cancers [1]. Be-
cause of its biological and clinical features of rapid pro-
gression including high invasiveness, neoangiogenesis,
and frequent local and metastatic recurrences, IBC is
the most aggressive form of primary breast cancer. Des-
pite progresses in the multidisciplinary treatment, the
prognosis is poorer than that of non-inflammatory breast
cancer (nIBC), with a 5-year overall survival rate of only
40%, compared with 85% in stage III nIBC patients. IBC
diagnosis is based on a combination of clinical informa-
tion, typically combining fast development (<6 months)
in the affected breast of specific signs and symptoms,
such as pain, erythema, edema, reddening, “peau d’or-
ange” of the overlying skin, abnormalities of the nipple
and udder enlargement and induration [2].
The low prevalence of IBC, and the small size of diag-

nostic biopsy specimens have been obstacles in under-
standing of IBC pathogenesis. To date, current treatments
are based on multimodal approaches, are non-specific
for IBC, and do not result in long-term eradication of
the disease. Previous studies have identified several
genes and pathways that might contribute to the IBC
phenotype. Approximately 57% of IBCs are estrogen re-
ceptor (ER) and progesterone receptor (PR) negative,
whereas about 30% are triple-negative breast cancers
(TNBC) [3]. IBCs present often mutations in the TP53
tumor suppressor, overexpression of CDH1 and angio-
genic factors such as VEGF, FGF2 and VEGFR1 [4].
Using high-throughput molecular analyses, Van Golen
et al. [5] reported frequent overexpression of RHOC
GTPase and loss of expression of WISP3/LIBC (Lost in
Inflammatory Breast Cancer). IBCs have also a higher
Ki-67 expression of than nIBCs [6]. Using an integrated
analysis of gene expression and array-based comparative
genomic hybridization (aCGH), 24 potential IBC-specific
oncogenes have been identified, which could be involved
in IBC aggressiveness [7]. More recently, the World IBC
Consortium was founded to foster collaborations be-
tween research groups focusing on IBC with the aims of
establishing the molecular profile of IBC using a wide
number of samples and of searching for gene signa-
tures associated with survival and response to neo-
adjuvant chemotherapy [8]. The analysis of about four
hundreds of whole-genome mRNA expression profiles
revealed that IBC is transcriptionally heterogeneous,
that all molecular subtypes described in nIBC are also
detectable in IBC, albeit with a different frequency,
and identified down-regulation of TGFβ as biologically
relevant [9]. However, these advances have not yet led
to clinical applications, and the need to identify clin-
ical IBC biomarkers to improve diagnosis and treat-
ment persists.
Gene expression changes and the coordination of cel-
lular behavior depend on the activity of transcription
factors (TFs) acting as master regulators (MR). In a
number of cancer types, using context-specific network
strategies has revealed the role of MRs. For example, the
role of STAT3 and CEBP/B as responsible for the mes-
enchymal transformation in glioblastoma was evidenced
by de novo reconstruction of the transcriptional network
underlying the observed phenotype [10]. Master regula-
tors of FGFR2 signaling were recently identified in a
similar fashion by using several datasets for discovery
and validation [11]. Gene networks and MRs have also
been studied in stem cells [12,13]. Such identification of
MRs is called Master Regulator Analysis and is based on
the enrichment of the TF regulon (the set of predicted
TF targets) with respect to a specific gene signature of
the considered phenotype [10,14]. The basic information
needed to apply this network-based strategy relies on
the availability of a context-specific TF-centric regulatory
network that can be computed via inferential statistics
approaches using many gene expression data. De novo
gene network inference can be both unsupervised
[15,16] and supervised [17] and can be based on a num-
ber of heuristics [18,19].
Here, we describe a network-based strategy to identify

TFs acting as MRs in IBC. We show that the nuclear ex-
pression of the Nuclear Factor of Activated T-Cell 5
(NFAT5) TF is a peculiar feature of IBC, which could be
used as a potential biomarker of this disease and a pos-
sible candidate for treatments.

Methods
Microarray gene expression dataset and supervised
analysis
To better understand the gene expression signature and
identify potential transcriptional regulators of IBC ag-
gressiveness, we used, as learning set, a previously pub-
lished gene expression dataset [7] including 197 breast
cancer samples from IPC Marseille-France (63 IBCs and
134 nIBCs) and available from the NCBI’s Gene Expres-
sion Omnibus (GEO) portal (GSE23720) and the valid-
ation set [9] including 96 samples from the General
Hospital Sint-Augustinus (Antwerp, Belgium; 41 IBCs
and 55 nIBCs). The Affymetrix CEL files of both data-
sets were converted to normalized expression value
using Robust Multi-Array Average (RMA) method pro-
vided by “affy” Bioconductor package.
For the supervised analysis of gene expression pro-

files between the IBC and nIBC groups of the learn-
ing set, differentially expressed (DE) probe-sets were
first filtered for absolute fold change ≥ 1.5. Statistical
analysis was then applied to these filtered probe-sets
using the Student’s t-test, with p ≤ 0.05. The robust-
ness of the resulting gene-list was tested in the



Remo et al. Journal of Translational Medicine  (2015) 13:138 Page 3 of 13
Belgium independent validation set. A classifier of
samples based on the expression of the differentially
expressed probe sets was built by measuring the
Pearson correlation (r thereafter designated as IBC
score) of each sample with the IBC centroid, defined
as the average corresponding expression profile of all
IBCs from the learning set: samples with r > 0 were
classified as “IBC-like” and those with r < 0 were
classified as “nIBC-like”. Gene Ontology (GO) term
enrichment analysis of the resulting DE genes was con-
ducted making use of Database for Annotation, Visualization
and Integrated Discovery (DAVID) (http://david.abcc.n-
cifcrf.gov), while their functional characterization to identify
possible enriched molecular networks and canonical path-
ways was performed using a proprietary software, Ingenuity
Pathway Analysis (IPA) from Ingenuity Systems®
(http://www.ingenuity.com).
Construction of transcriptional regulatory network and
master regulator analysis
A transcriptional regulation network was inferred using
the ARACNe algorithm [15]; it uses an information the-
oretic approach to dissect physical transcriptional inter-
actions between TFs and their potential targets from
mutual information (MI). The MI was estimated by
using the “parmigene” package (PARallel Mutual Infor-
mation calculation for GEne NEtwork reconstruction
[20]), available on CRAN. The package provides a paral-
lel estimation of the mutual information based on en-
tropy estimates from k-nearest neighbors’ distances with
default values of k equal to 3, and 10−12 for random
noise. Master Regulator Analysis (MRA) algorithm [10]
was then applied to compute the statistical significance
of the overlap between the regulon of each TF (that is,
its ARACNe-inferred targets) and the differentially
expressed gene list. Given an interaction network, gen-
erated by ARACNe, a (candidate) master regulator gene,
and a gene signature, the MRA algorithm computes the
enrichment of the signature genes in the regulon of that
gene. The regulon of a TF is defined as its neighborhood
in the interaction network. There are two different
methods to evaluate the enrichment of the signature in
the regulon. One method uses the statistical Fisher’s
exact test, while the other approach uses Gene Set En-
richment Analysis (GSEA). In this work, the enrichment
was evaluated using the Fisher’s exact test and corrected
using the Benjamini and Hochberg (BH) false discovery
rate (FDR) for multiple-testing. The significant TFs act-
ing as potential master regulators in IBC and their spe-
cific regulons were then imported into the IPA software
to identify the most enriched canonical pathways, the
over-represented biological processes and molecular
functions associated to candidate genes.
Validation cohort and tissue microarray
A total of 2116 consecutive patients affected by invasive
breast carcinoma were collected between January 1992
and December 2006 and included in the database of the
Department of Pathology of the G.B. Rossi Hospital in
Verona. Clinical data (patient’s medical history, histo-
logical diagnosis, staging, treatment) were evaluated as
previously published [21]. Briefly, tumor specimens were
retrospectively reviewed by pathologists to define the
histological size, type and grade of the primary tumor
and the histological axillary lymph node status. Clinico-
pathological criteria to include a patient in the IBC
group (n = 39) were carried out according to Manfrin
et al. [21]. They included histological diagnosis of neoplas-
tic emboli within superficial dermal lymphatic spaces and/
or clinical signs such as diffuse erythema, “peau d’orange”,
edema, warmth, tenderness, breast enlargement, and dif-
fuse induration of the breast on palpation, as described by
Haagensen [22]. The nIBC group (n = 82) consisted of pri-
mary invasive breast cancers without any of the above-
quoted clinico-pathological criteria of IBC.
Tissue microarrays (TMAs) were constructed from

archival tissue blocks of IBC and nIBC samples available
in sufficient amount for TMA construction. We used a
Beecher tissue microarray instrument (Beecher Instru-
ments, Hacken-sack, NJ, USA). Tissue cylinders, with a
diameter of 0.6 mm, were punched from paraffin blocks
in demarcated areas on parallel haematoxylin and eosin-
stained sections. Three separate cores were sampled
from each block, then deposited into a recipient master
paraffin block. Each core was placed 1 mm apart on the
x-axis and 1.5 mm apart on the y-axis of the master
block. In total, 6 TMA paraffin blocks were prepared,
3 μm-thick sections were cut from each TMA block and
stained with haematoxylin and eosin. Microarray sections
were then reviewed to ensure that the sections from each
case were morphologically similar to those of the corre-
sponding whole tissue section and represented cancerous
or normal epithelial cells. Further 3 μm-thick sections
were then cut from each of the master blocks and
mounted on super frost plus slides, baked at 60°C for
60 min, deparaffinized, and rehydrated through graded
alcohol rinses for immunohistochemical (IHC) analyses.

Validation cohort and immunohistochemistry
The presence and distribution of tissue polypeptide anti-
gen was visualized by incubation with the specific pri-
mary antibody using Leica Bond-Max autostainer system
(Milan, Italy). The complete list of primary antibodies
and the corresponding experimental conditions are
shown in Table 1. All immunohistochemical staining
were interpreted regardless of staining intensity by three
independent investigators (P.P., A.R. and E.M.) blinded
to clinical data and laboratory results. The pattern of
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Table 1 Primary antibodies used in this study

Antigen Incubation time Clone Manufacture Dilution

NFAT5 15 min Rabbit polyclonal antibody ABCAM (AB 110995) 1:100

CDH1 15 min NCH38 monoclonal antibody DAKO (M 3612) 1:20

CTNNB1 15 min 15B8 monoclonal antibody SIGMA (C 7207) 1:150

COX2 15 min SP21 monoclonal antibody Thermo LABVISION (RM-9121-S0) 1:50

MGA 60 min Rabbit polyclonal antibody ABNOVA (PAB 23917) 1:1000

S1004A 15 min Rabbit polyclonal antibody DAKO (A5114) 1:50
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immunostaining was recorded according to the number
of positive neoplastic cells (at least 1000 total cells were
examined) and stratified into two groups: “positive
expression”, when more than 5% of tumor cells were
positive, and “negative expression”, when less than 5%
were positive. The percentage of positive cancer cells,
identified by immunoreactivity for each marker, was es-
timated in triplicate tissue cores. At least three different
representative blocks of each case were evaluated to en-
sure that the staining was homogeneous in the whole
tumor. For each tissue section, we also evaluated the
distribution of staining, taking into account the positiv-
ity in each subcellular compartment as follows: mem-
brane, cytoplasmatic and/or nuclear, respectively. For
NFAT5, three distinct patterns of subcellular expression
were identified: 1) subcellular cytoplasmic expression
(C) was defined as the presence of a homogeneous cyto-
plasmic staining in all tumour cells; 2) nuclear immuno-
reactivity (N) corresponded to a homogeneous nuclear
staining in tumor cells; 3) cytoplasmic/nuclear immuno-
staining (N/C) exhibited a mixture of nuclear and cyto-
plasmic immunohistochemical positivity within tumor
cells. For β-catenin, staining was variable both between
and within subcellular compartments and classified in 3
groups: 1) (M), in case of complete membranous stain-
ing; 2) (M/C), if tumor cells exhibited a mixture of
membranous and cytoplasmic positivity; 3) (N/C), if
tumor cell nuclei were stained and accompanied by
cytoplasmic positivity. Subcellular expression was scored
as positive (any positivity) or negative (no staining), by
assigning no cutoff value and regardless of intensity. To
ensure the reproducibility of the subcellular staining for
each marker, one third of the cases were stained a second
time. Normal breast tissue cells adjacent to neoplastic
cells served as positive internal controls. Tissue speci-
mens from hippocampus and colon carcinoma were used
as positive controls for MGA and COX2 immunopositiv-
ity, respectively. For MGA, only nucleolar staining was
observed, and loss of protein expression was defined as
the complete absence of nucleolar expression pattern. E-
cadherin (CDH1) staining pattern was evaluated accord-
ing to Manfrin et al. [21].
Statistical analysis
Statistical analyses were performed using R and SPSS
(version 15.0) for Windows (SPSS Inc., Chicago, Ill.,USA).
Data were reported as median or mean and standard de-
viation (SD), and the mean values compared using the
Student’s t-test, as indicated. The χ2 test was employed to
assess the association of gene/protein status and clinico-
pathological parameters. For NFAT5 staining pattern, the
sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV) were computed. Using
Kaplan-Meier method we performed survival curves and
differences were estimated with the log-rank test. Results
were considered statistically significant when a p ≤ 0.05
was obtained. Correction of p-value was performed with
Benjamini and Hochberg false discovery rate method.

Ethics statement
This study was carried out according to the principles of
the Declaration of Helsinki and approved by the Institu-
tional Review Board of Department of Pathology and
Diagnosis, University of Verona, Verona, Italy. All pa-
tients provided written informed consent for the collec-
tion of samples and subsequent analyses.

Results
IBC signature is enriched for dis-regulation of cell cycle
In [7], an integrated analysis of gene expression and
aCGH microarray applied to IBCs and nIBCs and 13,127
genes identified 24 potential candidate IBC-specific genes
that accurately distinguished IBCs and nIBCs. To apply a
network-based strategy with a wider gene set and more
samples, we derived an IBC signature represented by the
genes differentially expressed between 63 IBC samples
and 134 nIBC samples. A total of 566 probe-sets were dif-
ferentially expressed, with a significance threshold of 0.05
and a fold change greater than 1.5, including 206 probe-
sets up-regulated in IBC and 360 down-regulated
(Additional file 1: Table S1). As expected, the classifica-
tion of all samples based on the expression of those 566
probe sets (IBC-like or nIBC-like) strongly correlated
with the actual IBC-nIBC phenotype (Additional file 2:
Figure S1A; p-value = 6.1 10-34 Student’s t-test). We
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employed DAVID and IPA enrichment analyses of DE
probe-sets in an attempt to obtain a biological func-
tional interpretation. Functional enrichment from DA-
VID analysis showed that the largest fraction of
overexpressed genes was enriched for GO terms and
KEGG pathway related to the positive regulation of Cell
Cycle and in particular the Mitotic Phase. In agreement
with these results, Ingenuity Pathway Analysis showed
that the most significantly enriched cell functions asso-
ciated with the overexpressed genes belonged to bio-
logical categories such as Cell Cycle, Cellular Assembly
and Organization, Cell Death and Survival.

Validation of the IBC signature
Since all our network-based discovery, reported in the
rest of the paper, relies on the above IBC signature, we
first validated the signature by using another dataset of
41 IBC and 55 nIBC from the Translational Cancer Re-
search Unit (TRCU) General Hospital Sint-Augustinus
Antwerp-Belgium [9]. We computed the centroid ex-
pression profile of IBC samples of the learning set and
for the 566 selected probesets and evaluate its Pearson
correlation, r, with each sample of the validation set. As
reported in the Additional file 2: Figure S1B, the , the
resulting classification (IBC-like or nIBC-like) correlated
with the actual IBC-nIBC phenotype (p-value of 1.8 10-4,
Student’s t-test). Because of the unbalance between IBCs
and nIBCs regarding the SBR tumor grade, we verified
Figure 1 Network inference and MRA flowchart. An overview of the bioinf
samples and 134 nIBC samples). The gene expression datasets were analyz
regulatory network. Master Regulator Analysis was used to select the TFs sh
regulon in the network and the IBC gene expression signature. ARACNe co
TFs and potential targets and data processing inequality (DPI) to cut most
that our 566-probe set signature was not more associ-
ated with the grade than with the IBC-nIBC phenotype.
That was confirmed in multivariate analysis in both the
learning and validation sets (Additional file 2: Figure S1
C-D), in which the signature (IBC score in continuous
value) and the SBR grade (1, 2, or 3) independently pre-
dicted the IBC-nIBC phenotype by using logistic
regression.

Regulatory network derived from gene expression
profiles
To get insight into potential transcriptional regulators of
IBC phenotype, we reverse-engineered transcriptional in-
teractions from gene expression data. Reverse-engineering
was done using the ARACNe algorithm [15] by applying
the analysis pipeline reported in Figure 1. ARACNe is an
unbiased algorithm that infers direct transcriptional inter-
actions based on the mutual information between each
transcriptional regulator and its potential targets. For opti-
mal analyses, ARACNe requires large data sets of gene ex-
pression profiles (at least 100 expression profiles) having
significant endogenous (i.e., genetic) and/or exogenous (i.e.,
perturbation-induced) heterogeneity. We used the whole
dataset of expression profiles reported elsewhere by some
of the authors [7] which is ideally suited for ARACNe be-
cause it is relatively large (n = 197) and diverse. In order to
highlight the variability of our dataset, also in terms of clin-
ical features, we report as supplementary figure (Additional
ormatics pipeline. Input data are 197 Affymetrix.CEL files (63 IBC
ed simultaneously with the ARACNe algorithm to infer a transcriptional
owing a significant overlap between the targets in each extracted TF
mprises two main steps: estimation of mutual information between
of the indirect interactions.
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file 3: Figure S2) the disease free survival (DFS) curves sepa-
rated by grade and tumor types showing that they are dif-
ferent given the grade: as expected, the survival of IBC
patients was inferior to that of nIBC patients, for both
grade II and grade III tumors.
ARACNe inferred a network with 81,606 interactions

for 1,601 TFs. Master Regulator Analysis [10] was then
applied to score the TFs in terms of enrichment with re-
spect to the IBC/nIBC signature. Results of MRA, for
each TF, are reported in Additional file 4: Table S2. We
chose the top three enriched TFs as genes possibly re-
lated to IBC: NFAT5 (Nuclear Factor Of Activated T-
Cells 5, p-value of MRA = 10−29, log fold change of 0.834
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Figure 2 Master Regulators of the IBC signature. A: The network shows the t
(red or green round nodes). The figure reports just the differentially expressed
IBC, and green nodes represent down-regulated targets. The gene network is
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three regulons. C: Enrichment of known binding motifs for NFAT5 in its inferr
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value of MRA = 10−35, log fold change of 0.73 and p-
value = 10−10), and CTNNB1 (Catenin Beta-1, p-value of
MRA=10−33, log fold change of −1.129 and p-value = 10−15).
NFAT5 and MGA are up-regulated in IBC. Figure 2A reports
the interconnected network of these three main hubs, their
synergetic effect and a possible mutual “shadow” or an overlap
between regulons, suggesting that these MRs might function,
at least in part, cooperatively to regulate sets of genes. Fig-
ure 2B reports how the DE genes are distributed among the
regulons of the selected TFs. Moreover, as was done in [11],
we show that the motifs of NFAT5 and MGA are strongly
enriched near the promoters of genes in their own regulons
B

D

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

400 300 200 100 0 100 200 300 400

Nearest binding site (kb)

D
en

si
ty

op-three MRs (round white nodes) with their respective inferred targets
genes in each regulon. Red nodes depict up-regulated target genes in
deeply interconnected, showing a partial overlapping among the three
hite nodes). B: Venn diagram of the overlapping between DEGs and the

ed regulon. The occurrence of motif sites is shown as the distance
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(Figure 2C and D). The figures show the distribution of the
first occurrence of motifs as functions of the distance from
the transcription starting site in the promoter region of each
gene in the regulon (red line). Motif occurrences were de-
tected with PWM models of NFAT5 and MGA obtained re-
spectively from Transfac (M00935) and Human-jolma 2013
databases. This was compared with the distribution of the first
occurrence of 100 random PWMs of the same length in the
same promoter regions (blue line).
One of the most enriched candidates was the Nuclear

Factor Of Activated T-Cells 5 (NFAT5) gene, a member
of the REL family of transcription factors (also known as
nuclear factor-κB (NF-κB) family). The NFAT signaling
axis is a vertebrate-specific pathway important for vari-
ous cell functions ranging from the development and ac-
tivation of lymphocytes to the differentiation of cardiac
muscle cells. NFAT5 signaling cascade plays an import-
ant role in different diseases and modulating phenotypes
associated with malignancy, but less is known about the
resulting changes in gene expression that affect breast
cancer [23,24]. In our network, NFAT5 showed a regu-
lon of 323 targets (Additional file 5: Table S3) and 53 of
them, all up-regulated in IBC, were DE genes. IPA func-
tional and pathway enrichment analysis of NFAT5 regu-
lon revealed 13 significant (corrected p-value ≤ 0.05)
biological processes, such as Cellular Development (76
genes), Cellular Growth and Proliferation (72), Gene Ex-
pression (57 genes), RNA Post-Transcriptinoal Modifica-
tion (14 genes), Cell Cycle and Morphology (respectively
32 and 42 genes) and four significant (corrected p-
value ≤ 0.05) enriched pathways belonging to categories
of Actin Cytoskeleton Signaling (10 genes), Insulin Re-
ceptor Signaling (7 genes), RhoGDI Signaling (8 genes)
and Protein Kinase A Signaling (12 genes).
In a number of systems, a crosstalk between NFAT5

and WNT/β-catenin signaling through its interaction
with β-catenin transactivation C-terminal domain has
been reported [25]. Accordingly, our analysis showed a
significant enrichment in genes of the CTNNB1 gene ex-
pression network. This gene codes for β-catenin, a key
downstream mediator of WNT canonical signaling path-
way [26]. Aberrant activation of the WNT/β-catenin cas-
cade is linked to a wide range of biological processes
leading to stem cell expansion and disturbed tissue
architecture [27,28]. In our network, the CTNNB1 regu-
lon counted 102 members, and 37 of them were
enriched in the differentially expressed gene list (cor-
rected p-value < 10−33). Thirty-one of these 37 genes
were down-regulated in IBC. The IPA functional enrich-
ment analysis of the CTNNB1 regulon pinpointed the
metabolic pathway associated with D-glutamine and D-
glutamate, which is supported by a significant (corrected
p-value ≤ 0.05) enrichment of biological functions related
to regulation of Gene Expression (30 genes), Cellular
Growth and Proliferation (41 genes) and Cellular Move-
ment (15 genes).
Our model system showed that our gene signature was

also centered on the MGA gene that codes for a tran-
scription factor of the T-box/MYC families. MGA con-
tains both a T-box and a basic helix-loop-helix leucine
zipper (bHLH-zip) domain and is part of the network of
MAX and MAX-interacting proteins, which are involved
in fundamental aspects of cell-fate decisions [29]. The
biological roles of MGA in some types of cancer such as
lymphocytic leukemia and lung cancer are beginning to
emerge through extensive molecular profiling studies
[30,31]. In our regulatory network reconstruction, MGA
was connected to a regulon of 264 target genes, and 55
of them were enriched in the differentially expressed
gene list (corrected p-value < 10−35). Fifty-two of these
55 genes were up-regulated in IBC. IPA analysis indicated
that the members of the MGA regulon are associated with
15 significant (corrected p-value ≤ 0.05) functional cat-
egories including Gene Expression (49 genes), Cellular
Development (46 genes), Cellular Growth and Prolifera-
tion (53 genes), DNA Replication, Recombination and Re-
pair (11 genes), and Cellular Assembly and Organization
(20 genes) among over-represented functions. By zooming
on the specific molecular pathways associated with MGA
target genes, data mining through IPA showed 44 canon-
ical pathways. Notably, Insulin Receptor Signaling (6
genes), Actin Cytoskeleton Signaling (7 genes), ERK5 Sig-
naling (4 genes), Phospholipase C Signaling (7 genes) and
Estrogen Receptor Signaling (5 genes) were the five most
enriched pathways (Fisher’s exact test p-value ≤ 0.05),
while the top scoring disease-related pathway was that
one relative to Cancer (145 genes).

NFAT5 is a novel marker of IBC
To validate the top enriched MRs on independent sam-
ples, we used TMAs comprising 39 IBCs, 82 nIBCs and
15 benign breast tissues. We first verified that the two
groups of IBC and nIBC differed in terms of disease-
specific survival. By using Kaplan-Meier method, we
confirmed that IBC patients had a poorer prognosis than
nIBC patients accounting for a median of survival of
60.4 and 147.4 months, respectively (p < 0.0001) (Additional
file 6: Figure S3A). A detailed description of clinicopatho-
logical characteristics of IBC and nIBC samples has already
been provided in our previous report [21]. Globally, the
clinical and pathological findings were coherent with the
literature.
We measured the protein expression of our IBC candi-

date genes and their distribution in subcellular compart-
ments (nuclear, cytoplasmic/nuclear, membrane, or
membrane/cytoplasmic) in this sample series. We ob-
served that NFAT5 immunostaining was always positive
and localized in the cytoplasm in all benign mammary
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epithelial tissues (15 out of 15; 100%; Figure 3A-B and
Additional file 6: Figure S3B). The percentage of samples
NFAT5-positive was higher in IBCs (27 out of 39; 69.2%)
than in nIBCs (16 out 82; 19.5%; Figure 3A). Therefore, if
we consider NFAT5-positivity as a marker of IBC we get
62.8% positive predictive value (PPV) and 84.6% of nega-
tive predictive value (NPV). Next, we classified the NFAT5
subcellular staining pattern into three categories: cytoplas-
mic, nuclear/cytoplasmic and nuclear (Figure 3D). By ap-
plying this criterion, we observed that nuclear or nuclear/
cytoplasmic positivity was higher in IBC than in nIBC
samples (70% vs. 12.5%, p-value = 0.000797; Figure 3C).
These data indicated that most NFAT5-positive IBCs (19
out of 27) were characterized by a marked nuclear staining
often associated with cytoplasmic immunoreactivity. Not-
ably, in IBC, NFAT5 nuclear staining showed a high sensi-
tivity and specificity of 70% and 88% respectively. By
contrast, only 2 out of 16 (12.5%) of NFAT5 positive nIBC
specimens showed nuclear immunoreactivity, while the
majority (14 out of 16; 87.5%) showed cytoplasm positivity
(Figure 3B-C). Summarizing, the nuclear expression of
NFAT5 has a 90.5% of PPV and 63.6% of NPV. As shown
above at the mRNA level, the NFAT5 protein positivity
was significantly different between IBC and nIBC inde-
pendently of the tumor grade: in the grade 1–2 samples
(14 IBCs and 56 nIBCs), NFAT5 staining was positive in 9
A 

C 

Figure 3 Expression of NFAT5 protein in normal and cancer breast specim
immunohistochemistry in 39 IBC, 82 nIBC and 15 normal breast specimens
cases. B-C: Percentage of NFAT5 subcellular staining detected on TMA valid
chi-square test with Yates’s correction for continuity between IBC and nIBC
nuclear/cytoplasmic (N/C), nuclear (N) or negative (Neg).
IBCs (64%) and in 10 nIBCs (18%; p-value = 4.7 10-4, χ2

test), and in the grade 3 samples (22 IBCs and 14 nIBCs),
NFAT5 staining was positive in 16 IBCs (73%) and in 2
nIBCs (14%; p-value = 6.3 10-4, χ2 test). These data sug-
gested that a nuclear accumulation of NFAT5 plays a rele-
vant role in IBC pathogenesis.

Crosstalk between NFAT5 and WNT/β-catenin signaling
In IBC E-cadherin expression is maintained in the pri-
mary tumor and tumor emboli [6-8]. Accordingly, in the
validation datasets, we found that E-cadherin positivity
was observed in almost all cases of IBCs (data not
shown), its expression, however, was not statistically dif-
ferent in comparison to nIBCs (87.2% vs. 82.5%; p-value =
0.698). Moreover, β-catenin positivity was prevalent in
IBCs but not statistically significant when compared with
nIBCs (95% vs. 82.5%; p-value = 0.116; Figure 4A). IHC
staining of normal breast specimens, showed that β-
catenin was expressed in mammary epithelial cells and
mainly restricted to the plasma membrane as well as E-
cadherin (data not shown). To further characterize the re-
lationship between WNT canonical pathway and IBC, we
analyzed β-catenin expression pattern by taking into ac-
count membrane, membrane/cytoplasmic, and nuclear/
cytoplasmic localization (Figure 4D). IBCs frequently
showed nuclear/cytoplasmic and/or membrane/cytoplasmic
B 

D 

ens spotted on TMA. NFAT5 protein staining was evaluated by
(Norm). A: The percentage of NFAT5-positive and NFAT5-negative
ation series. The p-values reported in each graph were obtained by
group. D: NFAT5 subcellular immunostaining pattern: cytoplasmic (C),
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Figure 4 Expression of CTNNB1 protein in IBC and nIBC specimens. A: The percentage of CTNNB1-positive and CTNNB1-negative cases in the
validation series comprising 39 IBC and 80 nIBC specimens. B-C: Percentage quantification of CTNNB1 staining pattern detected on TMA validation
series. The p-values reported in each graph were obtained by chi-square test with Yates’s correction for continuity between IBC and nIBC groups. D:
CTNNB1 subcellular immunostaining pattern: membrane (M), membrane/cytoplasmic (M/C), nuclear/cytoplasmic (N/C) or negative (Neg).

A

B

Figure 5 Crosstalk between NFAT5 and WNT/CTNNB1-signaling in IBC pathogenesis. A-B: NFAT5 positivity and its subcellular distribution
according to the CTNNB1 activation in IBC and nIBC TMA validation series, respectively. CTNNB1 inactive indicates negative and/or membrane
staining; CTNNB1 active indicates cytoplasmic, nuclear and/or nuclear/cytoplasmic accumulation. Abbreviations: cytoplasmic (C), nuclear (N) and
nuclear/cytoplasmic (N/C).
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positivity for β-catenin as compared to nIBCs (62.1% vs.
7.6%; p-value= 9.29 10-09; Figure 4B-C), revealing a signifi-
cant association between β-catenin aberrant expression and
IBC phenotype. In addition, a positive correlation between
E-cadherin and β-catenin membrane expression was found
in nIBCs, suggesting that a preserved E-cadherin/β-catenin
complex on the membrane is a pattern frequently observed
in nIBCs (Additional file 6: Figure S3 C-D). Collectively,
these data provide suggest that WNT/β-catenin canonical
activation is preferentially found in IBC.
In addition, we wanted to determine the possible rela-

tionships between WNT/β-catenin and NFAT5 pathway.
In the IBC subgroup, NFAT5 positivity and its nuclear
and/or nuclear/cytoplasmatic accumulation was independ-
ent from the inactive (negative and/or membrane) or active
(cytoplasmic and/or nuclear) β-catenin state (Figure 5A).
In the nIBC subgroup, negative NFAT5 expression was
closely correlated to inactive form of β-catenin but not
with an activated status of WNT/β-catenin signaling
(Figure 5B). These findings suggested that activation of
NFAT5 signaling operate, at least partially, regardless of
WNT/ β-catenin activation pathway, to promote IBC de-
velopment and progression.
A 

B 

Figure 6 MGA and NFAT5-target genes expression in the TMA validation s
target genes (COX2 and S100A4) in the TMA validation series of IBC and nI
square test with Yates’s correction for continuity between IBC and nIBC gro
cases of IBC.
Validation of NFAT5 target genes
Since in-silico results also suggested a putative involve-
ment of MGA and other NFAT5-target genes in IBC
pathogenesis, we wondered whether NFAT5-target genes
may be correlated with that of the top deregulated genes
in our validation cohort. To this end, we selected two
additional genes (COX2 and S100A4), experimentally
validated NFAT5- target genes in breast and other cellu-
lar models [32,33]. Interestingly, COX2 positivity and
MGA positivity were significantly more prevalent in
IBCs than in nIBCs supporting in-silico and literature
data. In contrast, S100A4 did not show any significant
difference between IBC and nIBC (Figure 6A and B).
These results confirmed, at least partially, that the top
deregulated gene MGA and COX2 genes were related to
NFAT5 expression pattern in IBC subgroup.

Discussion
Although IBC is the most aggressive form of breast can-
cer, very few studies have identified IBC-specific gene
signatures or clinically applicable biomarkers, and thera-
peutic approaches are still based on clinic-pathological
factors similar to those used for nIBC patients. In this
eries. A: Percentage of tumor specimens expressing MGA and NFAT5-
BC subtypes. The p-values reported in graph were obtained by chi-
ups. B: COX2, MGA and S100A4 immunopositivity in representative
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study, we employed a systems biology approach with a
network-based strategy to gain insight into pathways
and master regulators associated with IBC pathogenesis.
By applying this approach to two gene expression data-
sets followed by validation at the protein level, we identi-
fied NFAT5 as a novel biomarker that potentially might
be developed into clinical assays to improve IBC classifi-
cation into molecularly distinct phenotype.
The roles of NFAT transcription factors have been ex-

tensively studied in the immune system but their impact
in human cancer remains poorly understood. Ubiquitous
expression of NFAT isoforms in mammalian tissues has
been described, and mainly two isoforms, NFAT1 and
NFAT5, have been reported as overexpressed in human
invasive ductal breast carcinomas. Overall, the contribu-
tion of specific NFAT isoforms in distinct BC pheno-
types is still unknown. We show that the constitutive
activation of NFAT5 signaling in IBC might, at least in
part, explain the aggressiveness of the IBC phenotype.
The transcriptional activity of NFATs is primarily regu-
lated by post-translational modifications that in turn de-
termine the subcellular localization. In the basal state,
two kinases - tyrosine phosphorylation-regulated kinase
2 (DYRK2) and casein kinase 1 (CK1) - phosphorylate
NFAT TFs, maintaining them localized to the cytoplasm
in an inactive conformation: the nuclear translocation
and transcriptional activation of NFAT in cancer cells
lead to the induction of genes that promote tumor pro-
gression, migration and invasion [24]. In line with this,
our analysis revealed that NFAT5 is expressed in non-
neoplastic breast tissues and exclusively confined to the
cytoplasmic compartment. Interestingly, in our valid-
ation series of malignant tissues, the pattern of NFAT5
expression was markedly different between IBC and
nIBC phenotypes. In fact, we observed an overexpres-
sion of NFAT5 in IBCs as compared to nIBCs, which
was further supported by a significantly higher nuclear
distribution in IBC than nIBC. These results suggest that
increased NFAT5 transcriptional activity or “constitutive
activation” might play a causal role in IBC pathogenesis.
Although the molecular mechanisms underlying the nu-
clear translocation of NFAT5 were not explored in the
present study, our data show that IBC and nIBC pheno-
types are biologically distinct and NFAT5 could serve as
surrogate biomarker in an immunohistochemical assay.
The algorithm also identified CTNNB1 as one of the

top three enriched TFs possibly related to IBC. Aberrant
WNT/β-catenin signaling has been reported in a variety
of tumors including breast carcinomas [34], but its
prevalence remains debated. Nuclear β-catenin expres-
sion has been found in triple-negative/basal-like breast
carcinomas and associated with poor clinical outcome,
while there is currently no information available on β-
catenin expression in IBC [27,28]. By using our
validation series, we showed that nuclear or cytoplasmic
expression of β-catenin is more recurrent in IBCs than
in nIBCs. Even more interestingly, we found evidence
that altered expression or activation of NFAT5 occurs
independently of the nuclear β-catenin accumulation,
suggesting that a substantial portion of biological re-
sponses in IBC may be mediated by NFAT5 transcrip-
tional network. In addition, negative and or cytoplasmic
NFAT5 expression was accompanied by “normal mem-
branous” β-catenin localization in nIBCs, supporting the
hypothesis that the better prognosis of nIBC subtype is
associated with a concomitant inactivation of signaling.
The crosstalk between WNT pathway and NFAT tran-
scriptional activity, however, warrants further studies in
in vitro and in vivo systems.
To support the importance of NFAT5 transcriptional

activation in IBC and further prove its biological rele-
vance in IBC, we also studied in our TMAs validation
series MGA and two known NFAT5 target genes, COX2
and S100A4. Notably, MGA and COX2 were almost ex-
clusively expressed in a proportion of IBC, reinforcing
the role of NFAT5 signaling as a central player of IBC
progression and providing further support to our in-
silico findings.
Conclusion
We applied a network-based strategy to uncover novel
MRs underlying IBC pathogenesis. We discovered that
NFAT5 transcription factor could constitute a surrogate
marker of NFAT-signaling pathway activation of IBC
and potentially a guide to assignment of IBC-specific
therapeutic agents. Our results indicate that NFAT5
pathway activation might be a potential and specific
player of IBC progression. Since antagonists of the
NFAT transcription factors family have anti-tumor-
promoting activity, our results may be relevant to the as-
sessment of new investigational drugs in preclinical trials
and in turn guide “personalized” therapeutic trial dedi-
cated to IBC.
Additional files

Additional file 1: Table S1. List of 566 probe sets differentially
expressed between IBC samples and nIBC samples.

Additional file 2: Figure S1. Validation of the IBC signature and
independence from the SBR grade. A-B: The IBC score is a predictor of
the IBC phenotype in the IPC cohort (learning set: A) and the TCRU cohort
(validation set: B). C-D: Univariate and multivariate analyses of IBC score
(continuous value) and SBR grade (1, 2, or 3) for predicting the IBC-nIBC
phenotype in the IPC series (C) and in the TCRU series (D).

Additional file 3: Figure S2. Survival curves of the IBC and nIBC
patients in the GSE23720 dataset according to tumor grade (II and III).
Kaplan-Meier curves are shown and compared with the log-rank test.

Additional file 4: Table S2. List of MRs tested and ranking in the
Master Regulator Analysis.

http://www.translational-medicine.com/content/supplementary/s12967-015-0492-2-s1.xlsx
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Additional file 5: Table S3. List of genes associated with the NFAT5,
MGA and CTNNB1 regulons.

Additional file 6: Figure S3. Survival analysis in TMA validation series,
NFAT5 staining pattern and correlation between E-cadherin and β- staining
patterns. A: Kaplan-Meier analysis of IBC and nIBC patients in TMA validation
series. The curves indicates that IBC group differs significantly from nIBC group
with respect to the diseases specific survival. B: Immunostaining pattern of
NFAT5 at high magnification (60x) in representative cases of normal breast
and IBC core specimens. NFAT5 staining is distributed in the cytoplasmic
compartment (brown) of normal mammary epithelial cells but does not mark
the nuclei (blue) in the normal mammary epithelial cells. In IBC, NFAT5 marks
both nuclei and cytoplasm (brown). C, D: Subcellular distribution of β-catenin
in relation to E-cadherin expression in nIBC and IBC TMA validation series,
respectively. β-catenin inactive indicates negative and/or membrane staining;
β-catenin active indicates cytosolic and/or nuclear accumulation.
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