J. Streilein, Ocular immune privilege: therapeutic opportunities from an experiment of nature, Nature Reviews Immunology, vol.3, issue.11, pp.879-89, 2003.
DOI : 10.1038/nri1224

R. Caspi, A look at autoimmunity and inflammation in the eye, Journal of Clinical Investigation, vol.120, issue.9, pp.3073-83, 2010.
DOI : 10.1172/JCI42440

J. Sahel and B. Roska, Gene Therapy for Blindness, Annual Review of Neuroscience, vol.36, issue.1, pp.467-88, 2013.
DOI : 10.1146/annurev-neuro-062012-170304

URL : https://hal.archives-ouvertes.fr/inserm-01258538

M. Reichel, R. Ali, and A. Thrasher, Immune responses limit adenovirally mediated gene expression in the adult mouse eye, Gene Therapy, vol.5, issue.8, pp.1038-1084, 1998.
DOI : 10.1038/sj.gt.3300691

S. Kochanek, High-Capacity Adenoviral Vectors for Gene Transfer and Somatic Gene Therapy, Human Gene Therapy, vol.10, issue.15
DOI : 10.1089/10430349950016807

F. Kreppel, T. Luther, and I. Semkova, Long-term transgene expression in the RPE after gene transfer with a high-capacity adenoviral vector, Invest Ophthalmol Vis Sci, vol.43, issue.6, pp.1965-70, 2002.

A. Puppo, G. Cesi, and E. Marrocco, Retinal transduction profiles by high-capacity viral vectors, Gene Therapy, vol.43, issue.10
DOI : 10.1128/JVI.00227-08

V. Seggern, D. Aguilar, E. Kinder, and K. , In vivo transduction of photoreceptors or ciliary body by intravitreal injection of pseudotyped adenoviral vectors, Molecular Therapy, vol.7, issue.1, pp.27-34, 2003.
DOI : 10.1016/S1525-0016(02)00030-8

S. Cashman, L. Mccullough, and R. Kumar-singh, Improved Retinal Transduction In Vivo and Photoreceptor-specific Transgene Expression Using Adenovirus Vectors With Modified Penton Base, Molecular Therapy, vol.15, issue.9, pp.1640-1646, 2007.
DOI : 10.1038/sj.mt.6300203

J. Sweigard, S. Cashman, and R. Kumar-singh, Adenovirus Vectors Targeting Distinct Cell Types in the Retina, Investigative Opthalmology & Visual Science, vol.51, issue.4, pp.2219-2247, 2010.
DOI : 10.1167/iovs.09-4367

J. Bennett, Immune response following intraocular delivery of recombinant viral vectors, Gene Therapy, vol.10, issue.11
DOI : 10.1038/sj.gt.3302030

K. Pauwels, R. Gijsbers, and J. Toelen, State-of-the-Art Lentiviral Vectors for Research Use: Risk Assessment and Biosafety Recommendations, Current Gene Therapy, vol.9, issue.6, pp.459-74, 2009.
DOI : 10.2174/156652309790031120

A. Auricchio, G. Kobinger, and V. Anand, Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model, Human Molecular Genetics, vol.10, issue.26, pp.3075-81, 2001.
DOI : 10.1093/hmg/10.26.3075

G. Duisit, H. Conrath, and S. Saleun, Five Recombinant Simian Immunodeficiency Virus Pseudotypes Lead to Exclusive Transduction of Retinal Pigmented Epithelium in Rat, Molecular Therapy, vol.6, issue.4, pp.446-54, 2002.
DOI : 10.1006/mthe.2002.0690

S. Kachi, K. Binley, and K. Yokoi, Equine infectious anemia viral vector-mediated codelivery of endostatin and angiostatin driven by retinal pigmented epithelium-specific VMD2 promoter inhibits choroidal neovascularization Retinal cell type expression specificity of HIV-1- derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors, Hum Gene Ther J Gene Med J Gene Med, vol.2078, issue.173, pp.31-91367, 2005.

K. Binley, P. Widdowson, and J. Loader, Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease Colella P, Auricchio A. AAV-mediated gene supply for treatment of degenerative and neovascular retinal diseases Vitreous: a barrier to nonviral ocular gene therapy, Invest Ophthalmol Vis Sci Curr Gene Ther Invest Ophthalmol Vis Sci, vol.541046, issue.2010, pp.4061-71371, 2005.

K. Greenberg, S. Geller, and D. Schaffer, Targeted transgene expression in muller glia of normal and diseased retinas using lentiviral vectors Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous, Invest Ophthalmol Vis Sci Mol Ther, vol.4817, issue.412, pp.1844-522096, 2007.

H. Petrs-silva, A. Dinculescu, and Q. Li, High-efficiency Transduction of the Mouse Retina by Tyrosine-mutant AAV Serotype Vectors, Molecular Therapy, vol.17, issue.3, pp.463-71, 2009.
DOI : 10.1038/mt.2008.269

C. Kay, R. Ryals, and G. Aslanidi, Correction: Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors, PLoS ONE, vol.8, issue.9, pp.62097-62122, 2013.
DOI : 10.1371/annotation/99ee1789-a658-4fb0-8593-40a40e9f344a

D. Dalkara, L. Byrne, and R. Klimczak, In Vivo-Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous, Science Translational Medicine, vol.5, issue.189, pp.189-76, 2013.
DOI : 10.1126/scitranslmed.3005708

T. Cronin, L. Vandenberghe, and P. Hantz, Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter, EMBO Molecular Medicine, vol.6, issue.9, pp.1175-90, 2014.
DOI : 10.15252/emmm.201404077

M. Scalabrino, S. Boye, and K. Fransen, Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness, Human Molecular Genetics, vol.24, issue.21, pp.6229-6268, 2015.
DOI : 10.1093/hmg/ddv341

L. Vandenberghe and A. Auricchio, Novel adeno-associated viral vectors for retinal gene therapy

R. Boyd, D. Sledge, and S. Boye, Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs, Gene Ther, vol.30, 2015.

C. Andrieu-soler, R. Bejjani, and T. De-bizemont, Ocular gene therapy: a review of nonviral strategies, Mol Vis, vol.12, pp.1334-1381, 2006.

Z. Han, S. Conley, and R. Makkia, Comparative Analysis of DNA Nanoparticles and AAVs for Ocular Gene Delivery, PLoS ONE, vol.44, issue.12, pp.52189-52221, 2012.
DOI : 10.1371/journal.pone.0052189.s004

J. Adijanto and M. Naash, Nanoparticle-based technologies for retinal gene therapy, European Journal of Pharmaceutics and Biopharmaceutics, vol.95, 2015.
DOI : 10.1016/j.ejpb.2014.12.028

Z. Han, S. Conley, and R. Makkia, DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice, Journal of Clinical Investigation, vol.122, issue.9, pp.3221-3227, 2012.
DOI : 10.1172/JCI64833DS1

Z. Han, M. Banworth, and R. Makkia, Genomic DNA nanoparticles rescue rhodopsinassociated retinitis pigmentosa phenotype Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution Leber congenital amaurosis: genes, proteins and disease mechanisms, FASEB J Hum Gene Ther Prog Retin Eye Res, vol.291527, issue.364, pp.2535-441255, 2004.

H. Morimura, G. Fishman, and S. Grover, Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis, Proceedings of the National Academy of Sciences, vol.95, issue.6, pp.3088-93, 1998.
DOI : 10.1073/pnas.95.6.3088

Y. Li, H. Wang, and J. Peng, Mutation Survey of Known LCA Genes and Loci in the Saudi Arabian Population, Investigative Opthalmology & Visual Science, vol.50, issue.3, pp.1336-1379, 2009.
DOI : 10.1167/iovs.08-2589

A. Maguire, F. Simonelli, and E. Pierce, Safety and efficacy of gene transfer for Leber's congenital amaurosis Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial, N Engl J Med Hum Gene Ther, vol.35819, issue.4010, pp.2240-8979, 2008.

J. Bainbridge, A. Smith, and S. Barker, Effect of gene therapy on visual function in Leber's congenital amaurosis Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics, N Engl J Med Proc Natl Acad Sci U S A, vol.358105, issue.2139, pp.2231-2240, 2008.

A. Maguire, K. High, and A. Auricchio, Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial, The Lancet, vol.374, issue.9701, pp.1597-605, 2009.
DOI : 10.1016/S0140-6736(09)61836-5

F. Simonelli, A. Maguire, and F. Testa, Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration, Molecular Therapy, vol.18, issue.3, pp.643-50, 2010.
DOI : 10.1038/mt.2009.277

M. Ashtari, L. Cyckowski, and J. Monroe, The human visual cortex responds to gene therapy???mediated recovery of retinal function, Journal of Clinical Investigation, vol.121, issue.6, pp.2160-2168, 2011.
DOI : 10.1172/JCI57377

S. Jacobson, A. Cideciyan, and R. Ratnakaram, Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations, Archives of Ophthalmology, vol.130, issue.1, pp.9-24, 2012.
DOI : 10.1001/archophthalmol.2011.298

J. Bennett, M. Ashtari, and J. Wellman, AAV2 gene therapy readministration in three adults with congenital blindness Pseudo-fovea formation after gene therapy for RPE65-LCA, Sci Transl Med Invest Ophthalmol Vis Sci, vol.456, issue.1201, pp.120-135, 2012.

M. Ashtari, H. Zhang, and P. Cook, Plasticity of the human visual system after retinal gene therapy in patients with Leber's congenital amaurosis, Science Translational Medicine, vol.7, issue.296, pp.296-110, 2015.
DOI : 10.1126/scitranslmed.aaa8791

F. Testa, A. Maguire, and S. Rossi, Three-Year Follow-up after Unilateral Subretinal Delivery of Adeno-Associated Virus in Patients with Leber Congenital Amaurosis Type 2, Ophthalmology, vol.120, issue.6, pp.1283-91, 2013.
DOI : 10.1016/j.ophtha.2012.11.048

A. Cideciyan, S. Jacobson, and W. Beltran, Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement, Proceedings of the National Academy of Sciences, vol.110, issue.6, pp.517-542, 2013.
DOI : 10.1073/pnas.1218933110

S. Jacobson, A. Cideciyan, and A. Roman, Improvement and Decline in Vision with Gene Therapy in Childhood Blindness, New England Journal of Medicine, vol.372, issue.20, pp.1920-1926, 2015.
DOI : 10.1056/NEJMoa1412965

J. Bainbridge, M. Mehat, and V. Sundaram, Long-Term Effect of Gene Therapy on Leber???s Congenital Amaurosis, New England Journal of Medicine, vol.372, issue.20, pp.1887-97, 2015.
DOI : 10.1056/NEJMoa1414221

F. Testa, E. Surace, and S. Rossi, Evaluation of Italian patients with leber congenital amaurosis due to AIPL1 mutations highlights the potential applicability of gene therapy Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial, Gene therapy arrives at the macula, pp.5618-241129, 2011.

S. Koch, Y. Tsai, and J. Duong, Halting progressive neurodegeneration in advanced retinitis pigmentosa, Journal of Clinical Investigation, vol.125, issue.9, pp.3704-3717, 2015.
DOI : 10.1172/JCI82462

S. Boye, S. Boye, and J. Pang, Functional and Behavioral Restoration of Vision by Gene Therapy in the Guanylate Cyclase-1 (GC1) Knockout Mouse, PLoS ONE, vol.361, issue.6, p.11306, 2010.
DOI : 10.1371/journal.pone.0011306.s001

S. Boye, I. Peshenko, and W. Huang, AAV-Mediated Gene Therapy in the Guanylate Cyclase (RetGC1/RetGC2) Double Knockout Mouse Model of Leber Congenital Amaurosis, Human Gene Therapy, vol.24, issue.2, pp.189-202, 2013.
DOI : 10.1089/hum.2012.193

A. Manfredi, E. Marrocco, and A. Puppo, Combined rod and cone transduction by adenoassociated virus 2/8 CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype, Hum Gene Ther Gene Ther, vol.2421, issue.127, pp.982-92662, 2013.

M. Tan, A. Smith, and B. Pawlyk, Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors, Human Molecular Genetics, vol.18, issue.12, pp.2099-114, 2009.
DOI : 10.1093/hmg/ddp133

S. Jacobson, A. Cideciyan, and T. Aleman, Gene Mutations: Foveal Cone Loss with Minimal Macular Photoreceptors and Rod Function Remaining, Investigative Opthalmology & Visual Science, vol.52, issue.1, pp.70-79, 2011.
DOI : 10.1167/iovs.10-6127

H. Sun and J. Nathans, [58] ABCR: Rod photoreceptor-specific ABC transporter responsible for Stargardt disease, Methods Enzymol, vol.315, pp.879-97, 2000.
DOI : 10.1016/S0076-6879(00)15888-4

J. Kong, S. Kim, and K. Binley, Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy, Gene Therapy, vol.91, issue.19, pp.1311-1331, 2008.
DOI : 10.1038/gt.2008.78

I. Trapani, E. Toriello, and S. De-simone, Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease, Human Molecular Genetics, vol.24, issue.23, pp.6811-6836, 2015.
DOI : 10.1093/hmg/ddv386

J. Ou, C. Vijayasarathy, and L. Ziccardi, Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer, Journal of Clinical Investigation, vol.125, issue.7, pp.2891-903, 2015.
DOI : 10.1172/JCI81380DS1

C. Bonnet, S. Augustin, and S. Ellouze, The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1783, issue.10, pp.1707-1724, 2008.
DOI : 10.1016/j.bbamcr.2008.04.018

S. Ellouze, S. Augustin, and A. Bouaita, Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy, Am J Hum Genet Mol Ther Methods Clin Dev Eur J Hum Genet, vol.83221, issue.701, pp.373-8762, 2008.

W. Feuer, J. Schiffman, and J. Davis, Gene Therapy for Leber Hereditary Optic Neuropathy, Ophthalmology, vol.123, issue.3, pp.1648-55, 2010.
DOI : 10.1016/j.ophtha.2015.10.025

T. Leveillard, S. Mohand-said, and O. Lorentz, Identification and characterization of rod-derived cone viability factor, Nature Genetics, vol.124, issue.7, pp.755-764, 2004.
DOI : 10.1093/nar/25.17.3389

URL : https://hal.archives-ouvertes.fr/inserm-00312378

Y. Yang, S. Mohand-said, and A. Danan, Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa, Molecular Therapy, vol.17, issue.5, pp.787-95, 2009.
DOI : 10.1038/mt.2009.28

URL : https://hal.archives-ouvertes.fr/inserm-00464512

L. Byrne, D. Dalkara, and G. Luna, Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration, Journal of Clinical Investigation, vol.125, issue.1, pp.105-121, 2015.
DOI : 10.1172/JCI65654DS1

T. Leveillard and J. Sahel, Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling, Science Translational Medicine, vol.2, issue.26, pp.26-42, 2010.
DOI : 10.1126/scitranslmed.3000866

URL : https://hal.archives-ouvertes.fr/inserm-00472434

N. Ait-ali, R. Fridlich, and G. Millet-puel, Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia, Cell Mol Ther, vol.16121, issue.46, pp.817-321131, 2013.

R. Maclaren, P. Buch, and A. Smith, CNTF gene transfer protects ganglion cells in rat retinae undergoing focal injury and branch vessel occlusion CNTF Gene Therapy Confers Lifelong Neuroprotection in a Mouse Model of Human Retinitis Pigmentosa Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy, Exp Eye Res Mol Ther PLoS One, vol.83237, issue.827, pp.1118-271308, 2006.

D. Dalkara, K. Kolstad, and K. Guerin, AAV Mediated GDNF Secretion From Retinal Glia Slows Down Retinal Degeneration in a Rat Model of Retinitis Pigmentosa, Molecular Therapy, vol.19, issue.9, pp.1602-1610, 2011.
DOI : 10.1038/mt.2011.62

M. Humayun, J. Dorn, and L. Da-cruz, Interim Results from the International Trial of Second Sight's Visual Prosthesis, Ophthalmology, vol.119, issue.4, pp.779-88, 2012.
DOI : 10.1016/j.ophtha.2011.09.028

A. Ho, M. Humayun, and J. Dorn, Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind, Ophthalmology, vol.122, issue.8, pp.1547-54, 2015.
DOI : 10.1016/j.ophtha.2015.04.032

K. Stingl, K. Bartz-schmidt, and D. Besch, Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration, Proc Biol Sci Neuron, vol.28050, issue.871, pp.2013007723-2013007756, 1757.

P. Lagali, D. Balya, and G. Awatramani, Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa, Nat Neurosci Science, vol.11329, issue.895990, pp.667-75413, 2008.

E. Mace, R. Caplette, and O. Marre, Targeting Channelrhodopsin-2 to ON-bipolar Cells With Vitreally Administered AAV Restores ON and OFF Visual Responses in Blind Mice, Molecular Therapy, vol.23, issue.1, pp.7-16, 2015.
DOI : 10.1038/mt.2014.154

B. Lin, A. Koizumi, and N. Tanaka, Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin Restoration of Vision with Ectopic Expression of Human Rod Opsin, Proc Natl Acad Sci U S A Cehajic-Kapetanovic J Curr Biol, vol.10525, issue.9216, pp.16009-142111, 2008.

B. Gaub, M. Berry, and A. Holt, Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity Restoring the ON Switch in Blind Retinas: Opto- mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool, Mol Ther PLoS Biol, vol.9413, issue.5, pp.1002143-95, 2015.

S. Jacobson, A. Sumaroka, and X. Luo, Retinal optogenetic therapies: clinical criteria for candidacy Establishment in culture of pluripotential cells from mouse embryos, Clin Genet Nature, vol.84292, issue.965819, pp.175-82154, 1981.

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-76, 2006.
DOI : 10.1016/j.cell.2006.07.024

K. Takahashi, K. Tanabe, and M. Ohnuki, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, issue.5, pp.861-72, 2007.
DOI : 10.1016/j.cell.2007.11.019

P. Alexander, H. Thomson, and A. Luff, Retinal pigment epithelium transplantation: concepts, challenges, and future prospects, Eye, vol.2, issue.8, pp.992-1002, 2015.
DOI : 10.1038/sj.eye.6702719

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541358

H. Nazari, L. Zhang, and D. Zhu, Stem cell based therapies for age-related macular degeneration: The promises and the challenges, Progress in Retinal and Eye Research, vol.48, pp.1-39, 2015.
DOI : 10.1016/j.preteyeres.2015.06.004

S. Jayakody, A. Gonzalez-cordero, and R. Ali, Cellular strategies for retinal repair by photoreceptor replacement, Progress in Retinal and Eye Research, vol.46, pp.31-66, 2015.
DOI : 10.1016/j.preteyeres.2015.01.003

M. Seiler and R. Aramant, Cell replacement and visual restoration by retinal sheet transplants, Progress in Retinal and Eye Research, vol.31, issue.6, pp.661-87, 2012.
DOI : 10.1016/j.preteyeres.2012.06.003

L. Leach and D. Clegg, Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease, STEM CELLS, vol.32, issue.8, pp.2363-73, 2015.
DOI : 10.1167/iovs.14-14007

S. Schwartz, J. Hubschman, and G. Heilwell, Embryonic stem cell trials for macular degeneration: a preliminary report, The Lancet, vol.379, issue.9817, pp.713-733, 2012.
DOI : 10.1016/S0140-6736(12)60028-2

S. Schwartz, E. Anglade, and R. Lanza, Stem cells in age-related macular degeneration and Stargardt's macular dystrophy ??? Authors' reply, The Lancet, vol.386, issue.9988, p.30, 2015.
DOI : 10.1016/S0140-6736(15)61203-X

A. Trounson and C. Mcdonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges, Cell Stem Cell, vol.17, issue.1, pp.11-22, 2015.
DOI : 10.1016/j.stem.2015.06.007

B. Stanzel, Z. Liu, and S. Somboonthanakij, Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space, Stem Cell Reports, vol.2, issue.1, pp.64-77, 2014.
DOI : 10.1016/j.stemcr.2013.11.005

I. Caras, N. Littman, and A. Abo, Proceedings: Debilitating Eye Diseases, STEM CELLS Translational Medicine, vol.20, issue.12, pp.1393-1400, 2014.
DOI : 10.5966/sctm.2014-0221

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250220

B. Diniz, P. Thomas, and B. Thomas, Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer, Investigative Opthalmology & Visual Science, vol.54, issue.7, pp.5087-96, 2013.
DOI : 10.1167/iovs.12-11239

S. Borooah, M. Phillips, and B. Bilican, Using human induced pluripotent stem cells to treat retinal disease, Progress in Retinal and Eye Research, vol.37, pp.163-81, 2013.
DOI : 10.1016/j.preteyeres.2013.09.002

F. Chen, S. Mclenachan, and M. Edel, iPS Cells for Modelling and Treatment of Retinal Diseases, Journal of Clinical Medicine, vol.3, issue.4, pp.1511-1552, 2014.
DOI : 10.3390/jcm3041511

R. Maclaren, R. Pearson, and A. Macneil, Retinal repair by transplantation of photoreceptor precursors, Nature, vol.4, issue.7116, pp.203-210, 2006.
DOI : 10.1038/nature05161

A. Barber, C. Hippert, and Y. Duran, Repair of the degenerate retina by photoreceptor transplantation, Proceedings of the National Academy of Sciences, vol.110, issue.1, pp.354-363, 2013.
DOI : 10.1073/pnas.1212677110

R. Pearson, A. Barber, and M. Rizzi, Restoration of vision after transplantation of photoreceptors, Nature, vol.28, issue.7396, pp.99-103, 2012.
DOI : 10.1038/nature10997

A. Gonzalez-cordero, E. West, and R. Pearson, Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina, Nature Biotechnology, vol.43, issue.8, pp.741-748, 2013.
DOI : 10.1038/sj.gt.3302460

S. Decembrini, U. Koch, and F. Radtke, Derivation of Traceable and Transplantable Photoreceptors from Mouse Embryonic Stem Cells, Stem Cell Reports, vol.2, issue.6, pp.853-65, 2014.
DOI : 10.1016/j.stemcr.2014.04.010

D. Lamba, J. Gust, and T. Reh, Transplantation of Human Embryonic Stem Cell-Derived Photoreceptors Restores Some Visual Function in Crx-Deficient Mice, Cell Stem Cell, vol.4, issue.1, pp.73-82, 2009.
DOI : 10.1016/j.stem.2008.10.015

D. Eberle, S. Schubert, and K. Postel, Increased Integration of Transplanted CD73-Positive Photoreceptor Precursors into Adult Mouse Retina, Investigative Opthalmology & Visual Science, vol.52, issue.9, pp.6462-71, 2011.
DOI : 10.1167/iovs.11-7399

J. Lakowski, Y. Han, and R. Pearson, Effective Transplantation of Photoreceptor Precursor Cells Selected via Cell Surface Antigen Expression, STEM CELLS, vol.29, issue.9, pp.1391-404, 2011.
DOI : 10.1002/stem.694

S. Reichman, A. Terray, and A. Slembrouck, From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium, Proceedings of the National Academy of Sciences, vol.111, issue.23, pp.8518-8541, 2014.
DOI : 10.1073/pnas.1324212111

J. Lakowski, A. Gonzalez-cordero, and E. West, Transplantation of Photoreceptor Precursors Isolated via a Cell Surface Biomarker Panel from Embryonic Stem Cell-Derived Self-Forming Retina, STEM CELLS, vol.31, issue.8, pp.2469-82, 2015.
DOI : 10.1002/stem.2051

J. Assawachananont, M. Mandai, and S. Okamoto, Transplantation of Embryonic and Induced Pluripotent Stem Cell-Derived 3D Retinal Sheets into Retinal Degenerative Mice, Stem Cell Reports, vol.2, issue.5, pp.662-74, 2014.
DOI : 10.1016/j.stemcr.2014.03.011

T. Nakano, S. Ando, and N. Takata, Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs, Cell Stem Cell, vol.10, issue.6, pp.771-85, 2012.
DOI : 10.1016/j.stem.2012.05.009

X. Zhong, C. Gutierrez, and T. Xue, Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs, Nature Communications, vol.129, p.4047, 2014.
DOI : 10.1111/j.1471-4159.2009.06322.x

N. Bull and K. Martin, Concise Review: Toward Stem Cell-Based Therapies for Retinal Neurodegenerative Diseases, STEM CELLS, vol.5, issue.8, pp.1170-1175, 2011.
DOI : 10.1002/stem.676

T. Mcgill, B. Cottam, and B. Lu, Transplantation of human central nervous system stem cells - neuroprotection in retinal degeneration, European Journal of Neuroscience, vol.199, issue.3, pp.468-77, 2012.
DOI : 10.1111/j.1460-9568.2011.07970.x

D. Emerich and C. Thanos, NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells, Curr Opin Mol Ther, vol.10, issue.5, pp.506-521, 2008.

P. Sieving, R. Caruso, and W. Tao, Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants, Proceedings of the National Academy of Sciences, vol.103, issue.10, pp.3896-901, 2006.
DOI : 10.1073/pnas.0600236103

K. Bharti, M. Rao, and S. Hull, Developing Cellular Therapies for Retinal Degenerative Diseases, Investigative Opthalmology & Visual Science, vol.55, issue.2, pp.1191-202, 2014.
DOI : 10.1167/iovs.13-13481

D. Thompson, R. Ali, and E. Banin, Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations From the Monaciano Symposium, Investigative Ophthalmology & Visual Science, vol.56, issue.2, pp.918-949, 2015.
DOI : 10.1167/iovs.14-16049

O. Reilly, M. Federoff, H. Fong, and Y. , Gene Therapy: Charting a Future Course???Summary of a National Institutes of Health Workshop, April 12, 2013, Human Gene Therapy, vol.25, issue.6, pp.488-97, 2013.
DOI : 10.1089/hum.2014.045