N. A. Gough, Fractal analysis of foetal heart rate variability, Physiological Measurement, vol.14, issue.3, 1993.
DOI : 10.1088/0967-3334/14/3/009

S. Oudjemia, A. Zaylaa, S. Haddab, and J. Girault, Coarse-Grained Multifractality Analysis Based on Structure Function Measurements to Discriminate Healthy from Distressed Foetuses, Computational and Mathematical Methods in Medicine, vol.2013, issue.5, 2013.
DOI : 10.1103/PhysRevLett.86.6026

URL : https://hal.archives-ouvertes.fr/inserm-01074916

I. Voicu and J. Girault, Multi-scale similarity entropy as a new descriptor to differentiate healthy to suffering foetus, 2012 IEEE International Conference on Complex Systems (ICCS)
DOI : 10.1109/ICoCS.2012.6458605

S. M. Pincus, Approximate entropy as a measure of system complexity., Proceedings of the National Academy of Sciences, vol.88, issue.6, pp.2297-2301, 1991.
DOI : 10.1073/pnas.88.6.2297

S. Oudjemia, A. Zaylaa, J. Charara, and J. Girault, Delta-fuzzy similarity entropy to discriminate healthy from sick fetus, 2013 2nd International Conference on Advances in Biomedical Engineering, pp.1-4, 2013.
DOI : 10.1109/ICABME.2013.6648832

URL : https://hal.archives-ouvertes.fr/inserm-00922140

F. Takens, Dynamical systems and turbulence, Lecture notes in mathematics, 1981.

J. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence Plots of Dynamical Systems, Europhysics Letters (EPL), vol.4, issue.9, pp.973-977, 1987.
DOI : 10.1209/0295-5075/4/9/004

J. Gao and H. Cai, On the structures and quantification of recurrence plots, Physics Letters A, vol.270, issue.1-2, pp.75-87, 2000.
DOI : 10.1016/S0375-9601(00)00304-2

C. Manetti, M. Ceruso, A. Giuliani, C. L. Webber-jr, and J. P. Zbilut, Recurrence quantification analysis as a tool for characterization of molecular dynamics simulations, Physical Review E, vol.59, issue.1, p.20, 1999.
DOI : 10.1103/PhysRevE.59.992

M. Thiel, M. Romano, P. Read, and J. Kurths, Estimation of dynamical invariants without embedding by recurrence plots, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.14, issue.2, pp.234-243, 2004.
DOI : 10.1063/1.1667633

N. Marwan and J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots, Physics Letters A, vol.302, issue.5-6, pp.299-307, 2002.
DOI : 10.1016/S0375-9601(02)01170-2

N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Recurrence plots for the analysis of complex systems, Physics Reports, vol.438, issue.5-6, pp.237-329, 2007.
DOI : 10.1016/j.physrep.2006.11.001

N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths, Recurrence-plot-based measures of complexity and their application to heart-rate-variability data, Physical Review E, vol.66, issue.2, p.26702, 2002.
DOI : 10.1103/PhysRevE.66.026702

J. P. Zbilut, N. Thomasson, and C. L. Webber, Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals, Medical Engineering & Physics, vol.24, issue.1, pp.53-60, 2002.
DOI : 10.1016/S1350-4533(01)00112-6

F. Balibrea, M. Caballero, and L. Molera, Recurrence quantification analysis in Liu???s attractor, Chaos, Solitons & Fractals, vol.36, issue.3, pp.664-670, 2008.
DOI : 10.1016/j.chaos.2006.06.107

S. J. Iwanski and E. Bradley, Recurrence plots of experimental data: To embed or not to embed?, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.4, p.861, 1998.
DOI : 10.1063/1.166372

L. Trulla, A. Giuliani, J. Zbilut, and C. Webber, Recurrence quantification analysis of the logistic equation with transients, Physics Letters A, vol.223, issue.4, pp.255-260, 1996.
DOI : 10.1016/S0375-9601(96)00741-4

H. Kantz and T. Schreiber, Nonlinear time series analysis, 2004.
DOI : 10.1017/CBO9780511755798

C. Webber and J. P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies, Journal of Applied Physiology, vol.76, issue.2, pp.965-973, 1994.

C. L. Webber-jr and J. P. Zbilut, Recurrence quantification analysis of nonlinear dynamical systems, Tutorials in contemporary nonlinear methods for the behavioral sciences, pp.26-94, 2005.

J. P. Zbilut and C. L. Webber, Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A, vol.171, issue.3-4, pp.199-203, 1992.
DOI : 10.1016/0375-9601(92)90426-M

C. D. Nguyen, S. J. Wilson, and S. Crozier, Automated Quantification of the Synchrogram by Recurrence Plot Analysis, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.946-955, 2012.
DOI : 10.1109/TBME.2011.2179937

J. P. Zbilut, A. Giuliani, and C. L. Webber, Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification, Physics Letters A, vol.246, issue.1-2, pp.122-128, 1998.
DOI : 10.1016/S0375-9601(98)00457-5

N. Packard, J. Crutchfield, J. Farmer, and R. Shaw, Geometry from a Time Series, Physical Review Letters, vol.45, issue.9, pp.712-716, 1980.
DOI : 10.1103/PhysRevLett.45.712

A. M. Fraser and H. L. Swinney, Independent coordinates for strange attractors from mutual information, Physical review A, p.1134, 1986.

C. Ahlstrom, P. Hult, and P. Ask, Thresholding Distance Plots Using True Recurrence Points, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, pp.3-3, 2006.
DOI : 10.1109/ICASSP.2006.1660747

M. Marek, Chaotic behaviour of deterministic dissipative systems, 1995.
DOI : 10.1017/CBO9780511608162

I. Voicu, J. Girault, and S. Menigot, Improved estimation of the fetal heart rate using directional doppler signal and yin, IRBM, vol.33, issue.4, pp.262-270, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00942342