B. Coe, S. Girirajan, and E. Eichler, The genetic variability and commonality of neurodevelopmental disease, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.43, issue.2, pp.118-147, 2012.
DOI : 10.1002/ajmg.c.31327

M. Ronemus, I. Iossifov, D. Levy, and M. Wigler, The role of de novo mutations in the genetics of autism spectrum disorders, Nature Reviews Genetics, vol.49, issue.2, pp.133-174, 2014.
DOI : 10.1038/75556

T. Gaugler, L. Klei, S. Sanders, C. Bodea, A. Goldberg et al., Most genetic risk for autism resides with common variation, Nature Genetics, vol.460, issue.8, pp.881-886, 2014.
DOI : 10.1016/j.cell.2013.10.020

V. Hu, B. Frank, S. Heine, N. Lee, and J. Quackenbush, Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes, BMC Genomics, vol.7, issue.1, pp.118-128, 2006.
DOI : 10.1186/1471-2164-7-118

S. Nardone, D. Sams, E. Reuveni, D. Getselter, O. Oron et al., DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways, Translational Psychiatry, vol.4, issue.9, 2014.
DOI : 10.1038/nn.2514

W. Wang, E. Kwon, and L. Tsai, MicroRNAs in learning, memory, and neurological diseases, Learning & Memory, vol.19, issue.9, pp.359-68, 2012.
DOI : 10.1101/lm.026492.112

B. Miller and C. Wahlestedt, MicroRNA dysregulation in psychiatric disease, Brain Research, vol.1338, pp.89-99, 2010.
DOI : 10.1016/j.brainres.2010.03.035

A. Chan and J. Kocerha, The Path to microRNA Therapeutics in Psychiatric and Neurodegenerative Disorders, Frontiers in Genetics, vol.3, 2012.
DOI : 10.3389/fgene.2012.00082

Z. Talebizadeh, M. Butler, and M. Theodoro, Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism, Autism Research, vol.382, issue.4, pp.240-50, 2008.
DOI : 10.1002/aur.33

G. Seno, M. Hu, P. Gwadry, F. Pinto, D. Marshall et al., Gene and miRNA expression profiles in autism spectrum disorders, Brain Research, vol.1380, pp.85-97, 2011.
DOI : 10.1016/j.brainres.2010.09.046

T. Sarachana, R. Zhou, G. Chen, H. Manji, and V. Hu, Investigation of posttranscriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines

K. Abu-elneel, T. Liu, F. Gazzaniga, Y. Nishimura, D. Wall et al., Heterogeneous dysregulation of microRNAs across the autism spectrum, neurogenetics, vol.63, issue.3, pp.153-61, 2008.
DOI : 10.1086/302011

B. Ander, N. Barger, B. Stamova, F. Sharp, and C. Schumann, Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders, Molecular Autism, vol.7, issue.1, pp.37-47, 2015.
DOI : 10.1186/s13229-015-0029-9

B. Delorme, E. Nivet, J. Gaillard, T. Haupl, J. Ringe et al., The Human Nose Harbors a Niche of Olfactory Ectomesenchymal Stem Cells Displaying Neurogenic and Osteogenic Properties, Stem Cells and Development, vol.19, issue.6, pp.853-66, 2010.
DOI : 10.1089/scd.2009.0267

Y. Horiuchi, S. Kano, K. Ishizuka, N. Cascella, S. Ishii et al., Olfactory cells via nasal biopsy reflect the developing brain in gene expression profiles: Utility and limitation of the surrogate tissues in research for brain disorders, Neuroscience Research, vol.77, issue.4, pp.247-50, 2013.
DOI : 10.1016/j.neures.2013.09.010

Y. Fan, G. Abrahamsen, R. Mills, C. Calderon, J. Tee et al., Focal Adhesion Dynamics Are Altered in Schizophrenia, Biological Psychiatry, vol.74, issue.6
DOI : 10.1016/j.biopsych.2013.01.020

G. Ronnett, D. Leopold, X. Cai, K. Hoffbuhr, L. Moses et al., Olfactory biopsies demonstrate a defect in neuronal development in Rett's syndrome, Annals of Neurology, vol.8, issue.2, pp.206-224, 2003.
DOI : 10.1002/ana.10633

A. Cook, A. Vitale, S. Ravishankar, N. Matigian, G. Sutherland et al., NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease, PLoS ONE, vol.129, issue.7, 2011.
DOI : 10.1371/journal.pone.0021907.s011

K. Borgmann-winter, S. Willard, D. Sinclair, N. Mirza, B. Turetsky et al., Translational potential of olfactory mucosa for the study of neuropsychiatric illness, Translational Psychiatry, vol.21, issue.3, 2015.
DOI : 10.1016/j.neures.2013.09.010

F. Feron, B. Gepner, E. Lacassagne, D. Stephan, B. Mesnage et al., Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders, Molecular Psychiatry, vol.10, issue.9
DOI : 10.1016/j.neures.2009.02.009

URL : https://hal.archives-ouvertes.fr/hal-01477124

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, issue.7, p.34, 2002.

P. Mestdagh, P. Van-vlierberghe, D. Weer, A. Muth, D. Westermann et al., A novel and universal method for microRNA RT-qPCR data normalization, Genome Biology, vol.10, issue.6, pp.64-74, 2009.
DOI : 10.1186/gb-2009-10-6-r64

M. Ziats and O. Rennert, Identification of differentially expressed microRNAs across the developing human brain, Molecular Psychiatry, vol.19, issue.7, pp.848-52, 2014.
DOI : 10.1038/nrn3475

K. Garbett, A. Vereczkei, S. Kalman, J. Brown, W. Taylor et al., Coordinated Messenger RNA/MicroRNA Changes in Fibroblasts of Patients with Major Depression, Biological Psychiatry, vol.77, issue.3, pp.256-65, 2015.
DOI : 10.1016/j.biopsych.2014.05.015

D. Kumari, A. Bhattacharya, J. Nadel, K. Moulton, N. Zeak et al., Identification of Fragile X Syndrome Specific Molecular Markers in Human Fibroblasts: A Useful Model to Test the Efficacy of Therapeutic Drugs, Human Mutation, vol.35, issue.2, pp.1485-94, 2014.
DOI : 10.1002/humu.22699

X. Luo, W. Yang, D. Ye, H. Cui, Y. Zhang et al., A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus, PLoS Genetics, vol.21, issue.6, 2011.
DOI : 10.1371/journal.pgen.1002128.s016

A. Jovicic, R. Roshan, N. Moisoi, S. Pradervand, R. Moser et al., Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes, Journal of Neuroscience, vol.33, issue.12, pp.5127-5164, 2013.
DOI : 10.1523/JNEUROSCI.0600-12.2013

K. Taganov, M. Boldin, K. Chang, and D. Baltimore, NF-??B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12481-12487, 2006.
DOI : 10.1073/pnas.0605298103

J. Mei, R. Bachoo, and C. Zhang, MicroRNA-146a Inhibits Glioma Development by Targeting Notch1, Molecular and Cellular Biology, vol.31, issue.17, pp.3584-92, 2011.
DOI : 10.1128/MCB.05821-11

M. Vasu, M. Anitha, A. Thanseem, I. Suzuki, K. Yamada et al., Serum microRNA profiles in children with autism, Molecular Autism, vol.5, issue.1, pp.40-50, 2014.
DOI : 10.1186/2040-2392-5-40

A. Rodrigues, I. Conceiçao, K. Kwiatkowska, I. Picanço, C. Café et al., Expression profile of circulating miRNAs in autism spectrum disorders. Conference Abstract, 2015.

E. Mor, S. Kano, C. Colantuoni, A. Sawa, R. Navon et al., MicroRNA-382 expression is elevated in the olfactory neuroepithelium of schizophrenia patients, Neurobiology of Disease, vol.55, 2013.
DOI : 10.1016/j.nbd.2013.03.011

I. Voineagu and V. Eapen, Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses, Frontiers in Human Neuroscience, vol.7, 2013.
DOI : 10.3389/fnhum.2013.00738

A. Depino, Peripheral and central inflammation in autism spectrum disorders, Molecular and Cellular Neuroscience, vol.53, pp.69-76, 2013.
DOI : 10.1016/j.mcn.2012.10.003

Y. Chen and C. Shen, Modulation of mGluR-Dependent MAP1B Translation and AMPA Receptor Endocytosis by MicroRNA miR-146a-5p, Journal of Neuroscience, vol.33, issue.21, pp.9013-9033, 2013.
DOI : 10.1523/JNEUROSCI.5210-12.2013

S. Zongaro, R. Hukema, D. Antoni, S. Davidovic, L. Barbry et al., The 3' UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse, Human Molecular Genetics, vol.22, issue.10
DOI : 10.1093/hmg/ddt044

M. Essa, N. Braidy, K. Vijayan, S. Subash, and G. Guillemin, Excitotoxicity in the Pathogenesis of Autism, Neurotoxicity Research, vol.20, issue.9390, pp.393-400, 2013.
DOI : 10.1007/s12640-012-9354-3

S. Goldstein, D. Bockenhauer, O. Kelly, I. Zilberberg, and N. , Potassium leak channels and the KCNK family of two-P-domain subunits, Nature Reviews Neuroscience, vol.2, issue.3, pp.175-84, 2001.
DOI : 10.1038/35058574

Y. Bando, T. Hirano, and Y. Tagawa, Dysfunction of KCNK Potassium Channels Impairs Neuronal Migration in the Developing Mouse Cerebral Cortex, Cerebral Cortex, vol.24, issue.4, pp.1017-1046, 2014.
DOI : 10.1093/cercor/bhs387

M. Bauman and T. Kemper, Neuroanatomic observations of the brain in autism: a review and future directions, International Journal of Developmental Neuroscience, vol.23, issue.2-3, 2005.
DOI : 10.1016/j.ijdevneu.2004.09.006

C. Murcia, F. Gulden, and K. Herrup, A question of balance: a proposal for new mouse models of autism, International Journal of Developmental Neuroscience, vol.23, issue.2-3, pp.2-3265, 2005.
DOI : 10.1016/j.ijdevneu.2004.07.001

C. Bagni and W. Greenough, From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome, Nature Reviews Neuroscience, vol.384, issue.5, pp.376-87, 2005.
DOI : 10.1093/hmg/8.13.2557

H. Zoghbi, Postnatal Neurodevelopmental Disorders: Meeting at the Synapse?, Science, vol.302, issue.5646, pp.826-856, 2003.
DOI : 10.1126/science.1089071

P. Choudhury, S. Lahiri, and U. Rajamma, Glutamate mediated signaling in the pathophysiology of autism spectrum disorders, Pharmacology Biochemistry and Behavior, vol.100, issue.4, pp.841-850, 2012.
DOI : 10.1016/j.pbb.2011.06.023

K. Rahn, B. Slusher, and A. Kaplin, Glutamate in CNS Neurodegeneration and Cognition and its Regulation by GCPII Inhibition, Current Medicinal Chemistry, vol.19, issue.9, pp.1335-1380, 2012.
DOI : 10.2174/092986712799462649

A. Iyer, E. Zurolo, A. Prabowo, K. Fluiter, W. Spliet et al., MicroRNA-146a: A Key Regulator of Astrocyte-Mediated Inflammatory Response, PLoS ONE, vol.7, issue.9, 2012.
DOI : 10.1371/journal.pone.0044789.s002

J. Wang, L. Tan, L. Tan, Y. Tian, J. Ma et al., Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy, Scientific Reports, vol.25, issue.1, 2015.
DOI : 10.1006/meth.2001.1262

K. Hu, Y. Xie, C. Zhang, D. Ouyang, H. Long et al., MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus, BMC Neuroscience, vol.13, issue.1, pp.115-125, 2012.
DOI : 10.1158/1541-7786.MCR-07-2102

K. Lennox, R. Owczarzy, D. Thomas, J. Walder, and M. Behlke, Improved Performance of Anti-miRNA Oligonucleotides Using a Novel Non-Nucleotide Modifier, Molecular Therapy - Nucleic Acids, vol.2, 2013.
DOI : 10.1038/mtna.2013.46

J. Krutzfeldt, N. Rajewsky, R. Braich, K. Rajeev, T. Tuschl et al., Silencing of microRNAs in vivo with ???antagomirs???, Nature, vol.33, issue.7068, pp.685-694, 2005.
DOI : 10.1038/nature04303

M. Ebert and P. Sharp, MicroRNA sponges: Progress and possibilities, RNA, vol.16, issue.11, 2010.
DOI : 10.1261/rna.2414110

D. Kuhn, G. Nuovo, T. Jr, A. Martin, M. Malana et al., Chromosome 21-derived MicroRNAs Provide an Etiological Basis for Aberrant Protein Expression in Human Down Syndrome Brains, Journal of Biological Chemistry, vol.285, issue.2, pp.1529-1572, 2010.
DOI : 10.1074/jbc.M109.033407

M. Holtje, F. Hofmann, R. Lux, R. Veh, I. Just et al., Glutamate Uptake and Release by Astrocytes Are Enhanced by Clostridium botulinum C3 Protein, Journal of Biological Chemistry, vol.283, issue.14, pp.9289-99, 2008.
DOI : 10.1074/jbc.M706499200