M. Coetzee, R. H. Hunt, R. Wilkerson, D. Torre, A. Coulibaly et al., Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex, Zootaxa, vol.3619, issue.3, pp.246-74, 2013.

C. Costantini, D. Ayala, W. M. Guelbeogo, M. Pombi, C. Y. Some et al., Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae, BMC Ecol, vol.9, p.2702294, 2009.

A. Della-torre, Z. Tu, and V. Petrarca, On the distribution and genetic differentiation of Anopheles gambiae s. s. molecular forms, Insect Biochem Mol Biol, vol.35, issue.7, p.15894192, 2005.

F. Simard, D. Ayala, G. C. Kamdem, M. Pombi, J. Etouna et al., Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation, BMC Ecol, vol.9, p.2698860, 2009.

Y. Lee, C. D. Marsden, L. C. Norris, T. C. Collier, B. J. Main et al., Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae, Proc Natl Acad Sci U S A, vol.110, issue.49, p.24248386, 2013.

P. Central and P. , , p.3856788

D. E. Neafsey, M. K. Lawniczak, D. J. Park, S. N. Redmond, M. B. Coulibaly et al., SNP genotyping defines complex gene-flow boundaries among African malaria vector mosquitoes, Science, vol.330, issue.6003, 2010.

B. J. White, C. Cheng, F. Simard, C. Costantini, and N. J. Besansky, Genetic association of physically unlinked islands of genomic divergence in incipient species of Anopheles gambiae, Molecular ecology, vol.19, issue.5, 2010.

C. Wondji, S. Frederic, V. Petrarca, J. Etang, F. Santolamazza et al., Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s, J Med Entomol, vol.42, issue.6, pp.998-1005, 2005.

M. C. Fontaine, J. B. Pease, A. Steele, R. M. Waterhouse, D. E. Neafsey et al., Extensive introgression in a malaria vector species complex revealed by phylogenomics, Science, 2014.

T. L. Turner and M. W. Hahn, Genomic islands of speciation or genomic islands and speciation?, Mol Ecol, vol.19, issue.5, pp.848-50, 2010.

T. L. Turner, M. W. Hahn, and S. V. Nuzhdin, Genomic islands of speciation in Anopheles gambiae, PLoS Biol, vol.3, issue.9, p.1182689, 2005.

T. E. Cruickshank and M. W. Hahn, Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow, Mol Ecol, vol.23, issue.13, pp.3133-57, 2014.

F. Aboagye-antwi, N. Alhafez, G. D. Weedall, J. Brothwood, S. Kandola et al., Experimental swap of Anopheles gambiae's assortative mating preferences demonstrates key role of X-chromosome divergence island in incipient sympatric speciation, PLoS Genet, vol.11, issue.4, p.4400153, 2015.

S. M. Rottschaefer, M. M. Riehle, B. Coulibaly, M. Sacko, O. Niare et al., Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae, PLoS Biol, vol.9, issue.3, p.3050937, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02008334

B. J. White, M. K. Lawniczak, C. Cheng, M. B. Coulibaly, M. D. Wilson et al., Adaptive divergence between incipient species of Anopheles gambiae increases resistance to Plasmodium, Proc Natl Acad Sci U S A, vol.108, issue.1, p.21173248, 2011.

P. Central and P. , , p.3017163

C. Mitri and K. D. Vernick, Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology, Curr Opin Microbiol, vol.15, issue.3, p.3404259, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02008330

M. M. Riehle, J. Xu, B. P. Lazzaro, S. M. Rottschaefer, B. Coulibaly et al., Anopheles gambiae APL1 is a family of variable LRR proteins required for Rel1-mediated protection from the malaria parasite, Plasmodium berghei, PLoS One, vol.3, issue.11, p.2577063, 2008.

S. Blandin, S. H. Shiao, L. F. Moita, C. J. Janse, A. P. Waters et al., Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae, Cell, vol.116, issue.5, p.15006349, 2004.

R. H. Baxter, S. Steinert, Y. Chelliah, G. Volohonsky, E. A. Levashina et al., A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in Anopheles gambiae, Proc Natl Acad Sci, vol.107, issue.39, p.2947905, 2010.

M. Fraiture, R. H. Baxter, S. Steinert, Y. Chelliah, C. Frolet et al., Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of Plasmodium, Cell Host Microbe, vol.5, issue.3, pp.273-84, 2009.

C. Mitri, J. C. Jacques, I. Thiery, M. M. Riehle, J. Xu et al., Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species, PLoS Pathog, vol.5, issue.9, 2009.

P. Central and P. , , p.2734057

M. Povelones, R. M. Waterhouse, F. C. Kafatos, and G. K. Christophides, Leucine-rich repeat protein complex activates mosquito complement in defense against Plasmodium parasites, Science, vol.324, issue.5924, pp.258-61, 2009.

P. Central and P. , , p.2790318

M. Williams, B. J. Summers, and R. H. Baxter, Biophysical Analysis of Anopheles gambiae Leucine-Rich Repeat Proteins APL1A1, APLB and APL1C and Their Interaction with LRIM1, PLoS One, vol.10, issue.3, p.118911, 2015.

H. C. Mccann, H. Nahal, S. Thakur, and D. S. Guttman, Identification of innate immunity elicitors using molecular signatures of natural selection, Proc Natl Acad Sci, vol.109, issue.11, p.3306723, 2012.

S. L. Sawyer, L. I. Wu, M. Emerman, and H. S. Malik, Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain, Proc Natl Acad Sci, vol.102, issue.8, p.549489, 2005.

Q. Ayub, B. Yngvadottir, Y. Chen, Y. Xue, M. Hu et al., FOXP2 targets show evidence of positive selection in European populations, Am J Hum Genet, vol.92, issue.5, p.3644635, 2013.

J. E. Crawford, E. Bischoff, T. Garnier, A. Gneme, K. Eiglmeier et al., Evidence for Population-Specific Positive Selection on Immune Genes of Anopheles gambiae. G3 (Bethesda), vol.2, pp.1505-1524, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02008329

A. Cohuet, S. Krishnakumar, F. Simard, I. Morlais, A. Koutsos et al., SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system, BMC Genomics, vol.9, p.2405807, 2008.

J. E. Crawford and B. P. Lazzaro, The demographic histories of the M and S molecular forms of Anopheles gambiae s.s, Mol Biol Evol, vol.27, issue.8, p.2915640, 2010.

M. K. Lawniczak, S. J. Emrich, A. K. Holloway, A. P. Regier, M. Olson et al., Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences, Science, vol.330, issue.6003, 2010.

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, J Am Stat Assoc, vol.58, pp.236-280, 1963.

W. J. Krzanowski and Y. T. Lai, A Criterion for Determining the Number of Groups in a Data Set Using Sum-ofSquares Clustering, Biometrics, vol.44, issue.1, pp.23-34, 1988.

B. E. Erisman, G. A. Paredes, T. Plomozo-lugo, J. J. Cota-nieto, P. Hastings et al., Spatial structure of commercial marine fisheries in Northwest Mexico. 68, vol.3, pp.564-71, 2011.

M. M. Riehle, K. Markianos, O. Niare, J. Xu, J. Li et al., Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region, Science, vol.312, issue.5773, p.16645095, 2006.

M. A. Osta, G. K. Christophides, and F. C. Kafatos, Effects of mosquito genes on Plasmodium development, Science, vol.303, issue.5666, pp.2030-2032, 2004.

F. H. Collins, R. K. Sakai, K. D. Vernick, S. Paskewitz, D. C. Seeley et al., Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae, Science, vol.234, issue.4776, p.3532325, 1986.

A. Molina-cruz, R. J. Dejong, C. Ortega, A. Haile, E. Abban et al., Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes, Proceedings of the National Academy of Sciences of the United States of America, 2012.

K. D. Vernick, F. H. Collins, and R. W. Gwadz, A general system of resistance to malaria infection in Anopheles gambiae controlled by two main genetic loci, Am J Trop Med Hyg, vol.40, issue.6, p.2742036, 1989.

R. H. Baxter, C. I. Chang, Y. Chelliah, S. Blandin, E. A. Levashina et al., Structural basis for conserved complement factor-like function in the antimalarial protein TEP1, Proc Natl Acad Sci, vol.104, issue.28, p.17606907, 2007.

P. Central and P. , , p.1905922

Y. Dong, R. Aguilar, Z. Xi, E. Warr, E. Mongin et al., Anopheles gambiae immune responses to human and rodent Plasmodium parasite species, PLoS Pathog, vol.2, issue.6, p.1475661, 2006.

M. Povelones, L. M. Upton, K. A. Sala, and G. K. Christophides, Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1, PLoS Pathog, vol.7, issue.4, p.21533217, 2011.

P. Central and P. , , p.3077365

G. Jaramillo-gutierrez, J. Rodrigues, G. Ndikuyeze, M. Povelones, A. Molina-cruz et al., Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes, BMC Microbiol, vol.9, 2009.

P. Central and P. , , p.2782267

L. S. Garver, A. C. Bahia, S. Das, J. A. Souza-neto, J. Shiao et al., Anopheles imd pathway factors and effectors in infection intensity-dependent anti-Plasmodium action, PLoS Pathog, vol.8, issue.6, 2012.

, PMID: 22685401, p.3369948

R. T. Fryxell, C. C. Nieman, A. Fofana, Y. Lee, S. F. Traore et al., Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali, Malar J, vol.11, 2012.

A. Gneme, W. M. Guelbeogo, M. M. Riehle, A. Sanou, A. Traore et al., Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso, Malar J, vol.12, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00836054

A. Gneme, W. M. Guelbeogo, M. M. Riehle, A. B. Tiono, A. Diarra et al., Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso, Malar J, vol.12, p.3583752, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00795360

M. O. Ndiath, C. Brengues, L. Konate, C. Sokhna, C. Boudin et al., Dynamics of transmission of Plasmodium falciparum by Anopheles arabiensis and the molecular forms M and S of Anopheles gambiae in Dielmo, Senegal. Malar J, vol.7, 2008.

T. A. Klein, B. A. Harrison, J. S. Grove, S. V. Dixon, and R. G. Andre, Correlation of survival rates of Anopheles dirus A (Diptera: Culicidae) with different infection densities of Plasmodium cynomolgi, Bull World Health Organ, vol.64, issue.6, p.2490972, 1986.

V. Robert, J. P. Verhave, and P. Carnevale, Plasmodium falciparum infection does not increase the precocious mortality rate of Anopheles gambiae, Trans R Soc Trop Med Hyg, vol.84, issue.3, p.2260162, 1990.

G. M. Chege and J. C. Beier, Effect of Plasmodium falciparum on the survival of naturally infected afrotropical Anopheles (Diptera: Culicidae), J Med Entomol, vol.27, issue.4, p.2201768, 1990.

J. C. Hogg and H. Hurd, The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania, Parasitology, vol.114, p.9107019, 1997.

J. C. Hogg and H. Hurd, Malaria-induced reduction of fecundity during the first gonotrophic cycle of Anopheles stephensi mosquitoes, Medical and veterinary entomology, vol.9, issue.2, p.7787226, 1995.

C. S. Hacker and W. L. Kilama, The relationship between plasmodium gallinaceum density and the fecundity of Aedes aegypti, J Invertebr Pathol, vol.23, issue.1, p.4819576, 1974.

J. Vezilier, A. Nicot, S. Gandon, and A. Rivero, Plasmodium infection decreases fecundity and increases survival of mosquitoes, Proc Biol Sci, vol.279, p.3427586, 1744.

A. M. Ahmed and H. Hurd, Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis, Microbes Infect, vol.8, issue.2, pp.308-323, 2006.

Y. O. Zhao, S. Kurscheid, Y. Zhang, L. Liu, L. Zhang et al., Enhanced survival of Plasmodiuminfected mosquitoes during starvation, PLoS One, vol.7, issue.7, p.3393683, 2012.

H. M. Ferguson and A. F. Read, Why is the effect of malaria parasites on mosquito survival still unresolved?, Trends Parasitol, vol.18, issue.6, p.12036738, 2002.

A. Cohuet, M. A. Osta, I. Morlais, P. H. Awono-ambene, K. Michel et al., Anopheles and Plasmodium: from laboratory models to natural systems in the field, EMBO Rep, vol.7, issue.12, p.1794687, 2006.

A. Molina-cruz, L. S. Garver, A. Alabaster, L. Bangiolo, A. Haile et al., The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system, Science, vol.340, issue.6135, p.3807741, 2013.

A. Boissiere, G. Gimonneau, M. T. Tchioffo, L. Abate, A. Bayibeki et al., Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon, PLoS One, vol.8, issue.1, p.3551906, 2013.

C. A. Janeway, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harb Symp Quant Biol, vol.54, issue.1, p.2700931, 1989.

S. Gallucci and P. Matzinger, Danger signals: SOS to the immune system, Curr Opin Immunol, vol.13, issue.1, pp.114-123, 2001.

Y. Dong, F. Manfredini, and G. Dimopoulos, Implication of the mosquito midgut microbiota in the defense against malaria parasites, PLoS Pathog, vol.5, issue.5, p.2673032, 2009.

M. Gendrin, F. H. Rodgers, R. S. Yerbanga, J. B. Ouedraogo, M. G. Basanez et al., Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nature communications, vol.6, p.4338536, 2015.

C. B. Pumpuni, M. S. Beier, J. P. Nataro, L. D. Guers, and J. R. Davis, Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria, Experimental parasitology, vol.77, issue.2, pp.195-204, 1993.

J. Rodrigues, F. A. Brayner, L. C. Alves, R. Dixit, and C. Barillas-mury, Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes, Science, vol.329, issue.5997, p.3510677, 2010.

A. Oliveira-gde, J. Lieberman, and C. Barillas-mury, Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity, Science, vol.335, issue.6070, pp.856-865, 2012.

R. M. Waterhouse, M. Povelones, and G. K. Christophides, Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins, BMC Genomics, vol.11, p.3020904, 2010.

J. Bella, K. L. Hindle, P. A. Mcewan, and S. C. Lovell, The leucine-rich repeat structure, Cellular and molecular life sciences: CMLS, vol.65, issue.15, pp.2307-2340, 2008.

M. M. Riehle, W. M. Guelbeogo, A. Gneme, K. Eiglmeier, I. Holm et al., A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites, Science, vol.331, issue.6017, pp.596-604, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971785

C. Fanello, F. Santolamazza, and A. Della-torre, Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medical and veterinary entomology, vol.16, p.12510902, 2002.

P. Librado and J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, vol.25, issue.11, pp.1451-1453, 2009.

C. Harris, L. Lambrechts, F. Rousset, L. Abate, S. E. Nsango et al., Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum, PLoS pathog, vol.6, issue.9, p.20862317, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02011022

P. Central and P. , , p.2940751

. R-core-team, R: A language and environment for statistical computing

C. Ritz and A. N. Spiess, qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis, Bioinformatics, vol.24, issue.13, pp.1549-51, 2008.

T. Ponnudurai, A. H. Lensen, A. D. Leeuwenberg, and J. H. Meuwissen, Cultivation of fertile Plasmodium falciparum gametocytes in semi-automated systems. 1. Static cultures, Trans R Soc Trop Med Hyg, vol.76, issue.6, pp.812-820, 1982.

B. Franke-fayard, H. Trueman, J. Ramesar, J. Mendoza, M. Van-der-keur et al., A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle, Mol Biochem Parasitol, vol.137, issue.1, 2004.

R. A. Fisher, Statistical Methods for Research Workers, vol.356, 1925.

B. V. Le, M. Williams, S. Logarajah, and R. H. Baxter, Molecular basis for genetic resistance of Anopheles gambiae to Plasmodium: structural analysis of TEP1 susceptible and resistant alleles, PLoS Pathog, vol.8, issue.10, p.3464232, 2012.

I. Holm, C. Lavazec, T. Garnier, C. Mitri, M. M. Riehle et al., Diverged alleles of the Anopheles gambiae leucine-rich repeat gene APL1A display distinct protective profiles against Plasmodium falciparum, PLoS One, vol.7, issue.12, p.3532451, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02008328