T. Fujiwara, Y. Imamura, R. Margolis, J. Slakter, and R. Spaide, Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Highly Myopic Eyes, American Journal of Ophthalmology, vol.148, issue.3, pp.445-50, 2009.
DOI : 10.1016/j.ajo.2009.04.029

Y. Nishida, T. Fujiwara, Y. Imamura, L. Lima, D. Kurosaka et al., CHOROIDAL THICKNESS AND VISUAL ACUITY IN HIGHLY MYOPIC EYES, Retina, vol.32, issue.7, pp.1229-1265, 2012.
DOI : 10.1097/IAE.0b013e318242b990

L. Ayton, R. Guymer, and C. Luu, Choroidal thickness profiles in retinitis pigmentosa, Clinical & Experimental Ophthalmology, vol.35, issue.Pt 4, pp.396-403, 2013.
DOI : 10.1111/j.1442-9071.2012.02867.x

D. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava et al., Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography, British Journal of Ophthalmology, vol.97, issue.1, pp.66-75, 2013.
DOI : 10.1136/bjophthalmol-2012-301917

V. Manjunath, M. Taha, J. Fujimoto, and J. Duker, Choroidal Thickness in Normal Eyes Measured Using Cirrus HD Optical Coherence Tomography, American Journal of Ophthalmology, vol.150, issue.3, pp.325-334, 2010.
DOI : 10.1016/j.ajo.2010.04.018

R. Ramrattan, T. Van-der-schaft, C. Mooy, W. De-bruijn, P. Mulder et al., Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging, Invest Ophthalmol Vis Sci, vol.35, pp.2857-64, 1994.

J. Ruiz-medrano, I. Flores-moreno, P. Pena-garcia, J. Montero, J. Duker et al., Macular Choroidal Thickness Profile in a Healthy Population Measured by Swept-Source Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.55, issue.6, pp.3532-3574, 2014.
DOI : 10.1167/iovs.14-13868

D. Mcleod, R. Grebe, I. Bhutto, C. Merges, T. Baba et al., Relationship between RPE and Choriocapillaris in Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.50, issue.10, pp.4982-91, 2009.
DOI : 10.1167/iovs.09-3639

S. Chung, S. Kang, J. Lee, and Y. Kim, Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-related Macular Degeneration, Ophthalmology, vol.118, issue.5, pp.840-845, 2011.
DOI : 10.1016/j.ophtha.2010.09.012

F. Coscas, N. Puche, G. Coscas, M. Srour, C. Francais et al., Comparison of Macular Choroidal Thickness in Adult Onset Foveomacular Vitelliform Dystrophy and Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.55, issue.1, pp.64-73, 2014.
DOI : 10.1167/iovs.13-12931

J. Fein, L. Branchini, V. Manjunath, C. Regatieri, J. Fujimoto et al., Analysis of Short-Term Change in Subfoveal Choroidal Thickness in Eyes With Age-Related Macular Degeneration Using Optical Coherence Tomography, Ophthalmic Surgery, Lasers and Imaging Retina, vol.45, issue.1, pp.32-39, 2014.
DOI : 10.3928/23258160-20131220-04

DOI : 10.1097/IAE.0b013e3182993e09

E. Sohn, A. Khanna, B. Tucker, M. Abramoff, E. Stone et al., Structural and Biochemical Analyses of Choroidal Thickness in Human Donor Eyes, Investigative Opthalmology & Visual Science, vol.55, issue.3, pp.1352-60, 2014.
DOI : 10.1167/iovs.13-13754

J. Lee, D. Lee, J. Lee, and Y. Yoon, Correlation Between Subfoveal Choroidal Thickness and the Severity or Progression of Nonexudative Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.54, issue.12, pp.7812-7820, 2013.
DOI : 10.1167/iovs.13-12284

M. Lindner, A. Bezatis, J. Czauderna, E. Becker, C. Brinkmann et al., Choroidal Thickness in Geographic Atrophy Secondary to Age-Related Macular Degeneration, Investigative Ophthalmology & Visual Science, vol.56, issue.2, pp.875-82, 2015.
DOI : 10.1167/iovs.14-14933

G. Yiu, Advances in choroidal imaging with EDI-OCT. Retina Today, 2014.

J. Jonas, T. Forster, P. Steinmetz, F. Schlichtenbrede, and B. Harder, CHOROIDAL THICKNESS IN AGE-RELATED MACULAR DEGENERATION, Retina, vol.34, issue.6, pp.1149-55, 2014.
DOI : 10.1097/IAE.0000000000000035

G. Yiu, S. Chiu, P. Petrou, S. Stinnett, N. Sarin et al., Relationship of Central Choroidal Thickness With Age-Related Macular Degeneration Status, American Journal of Ophthalmology, vol.159, issue.4, pp.617-643, 2015.
DOI : 10.1016/j.ajo.2014.12.010

T. Redmond, S. Yu, E. Lee, D. Bok, D. Hamasaki et al., Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle, PMID: 9843205], pp.344-51, 1998.
DOI : 10.1038/3813

G. Wolf, Function of the Protein RPE65 in the Visual Cycle, Nutrition Reviews, vol.63, issue.3, pp.97-100, 2005.
DOI : 10.1111/j.1753-4887.2005.tb00127.x

O. Strauss, The Retinal Pigment Epithelium in Visual Function, Physiological Reviews, vol.85, issue.3, pp.845-81, 2005.
DOI : 10.1152/physrev.00021.2004

T. Redmond, Focus on Molecules: RPE65, the visual cycle retinol isomerase, Experimental Eye Research, vol.88, issue.5, pp.846-853, 2009.
DOI : 10.1016/j.exer.2008.07.015

L. Ivert, H. Keldbye, and P. Gouras, Age-related changes in the basement membrane of the retinal pigment epithelium of Rpe65 ?/? and wild-type mice, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.3, issue.3, pp.250-256, 2005.
DOI : 10.1007/s00417-004-0967-y

M. Houssier, R. W. Lavalette, S. Keller, N. Guillonneau, X. Baragatti et al., CD36 Deficiency Leads to Choroidal Involution via COX2 Down-Regulation in Rodents, PLoS Medicine, vol.278, issue.2, pp.39-18288886, 2008.
DOI : 10.1371/journal.pmed.0050039.g004

URL : https://hal.archives-ouvertes.fr/inserm-00258554

M. Saint-geniez, T. Kurihara, E. Sekiyama, A. Maldonado, D. Amore et al., An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris, Proceedings of the National Academy of Sciences, vol.106, issue.44, pp.18751-18757, 2009.
DOI : 10.1073/pnas.0905010106

A. Biesemeier, T. Taubitz, S. Julien, E. Yoeruek, and U. Schraermeyer, Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration, Neurobiology of Aging, vol.35, issue.11, pp.2562-73, 2014.
DOI : 10.1016/j.neurobiolaging.2014.05.003

F. Holz, E. Strauss, S. Schmitz-valckenberg, and M. Van-lookeren-campagne, Geographic Atrophy, Ophthalmology, vol.121, issue.5, pp.1079-91, 2014.
DOI : 10.1016/j.ophtha.2013.11.023

V. Bonilha, Age and disease-related structural changes in the retinal pigment epithelium, Clinical Ophthalmology, vol.2, pp.413-437, 2008.
DOI : 10.2147/OPTH.S2151

B. Neuner, A. Komm, J. Wellmann, M. Dietzel, D. Pauleikhoff et al., Smoking history and the incidence of age-related macular degeneration???Results from the Muenster Aging and Retina Study (MARS) cohort and systematic review and meta-analysis of observational longitudinal studies, Addictive Behaviors, vol.34, issue.11, pp.938-985, 2009.
DOI : 10.1016/j.addbeh.2009.05.015

J. Hollyfield, Age-Related Macular Degeneration: The Molecular Link between Oxidative Damage, Tissue-Specific Inflammation and Outer Retinal Disease, Investigative Opthalmology & Visual Science, vol.51, issue.3, pp.1275-81, 2010.
DOI : 10.1167/iovs.09-4478

A. Dewan, M. Liu, S. Hartman, S. Zhang, D. Liu et al., HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration, Science, vol.314, issue.5801, pp.989-92, 2006.
DOI : 10.1126/science.1133807

A. Edwards, R. Ritter, K. Abel, A. Manning, C. Panhuysen et al., Complement Factor H Polymorphism and Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.421-425, 2005.
DOI : 10.1126/science.1110189

G. Mckay, C. Patterson, U. Chakravarthy, S. Dasari, C. Klaver et al., with age-related macular degeneration - a pooled analysis of 15 studies, Human Mutation, vol.45, issue.12, pp.1407-1423, 2011.
DOI : 10.1002/humu.21577

F. Sennlaub, C. Auvynet, B. Calippe, S. Lavalette, L. Poupel et al., deficient mice, EMBO Molecular Medicine, vol.48, issue.11, pp.1775-93, 2013.
DOI : 10.1002/emmm.201302692

URL : https://hal.archives-ouvertes.fr/inserm-00315944

R. Nussenblatt and F. Ferris, Age-related Macular Degeneration and the Immune Response: Implications for Therapy, American Journal of Ophthalmology, vol.144, issue.4, pp.618-644, 2007.
DOI : 10.1016/j.ajo.2007.06.025

S. Whitcup, A. Sodhi, J. Atkinson, V. Holers, D. Sinha et al., The Role of the Immune Response in Age-Related Macular Degeneration, International Journal of Inflammation, vol.8, issue.1, pp.348092-23762772, 2013.
DOI : 10.1167/iovs.04-0342

H. Chen, B. Liu, T. Lukas, and A. Neufeld, The Aged Retinal Pigment Epithelium/Choroid: A Potential Substratum for the Pathogenesis of Age-Related Macular Degeneration, PLoS ONE, vol.98, issue.6, pp.2339-18523633, 2008.
DOI : 10.1371/journal.pone.0002339.s003

R. Collier, Y. Wang, S. Smith, E. Martin, R. Ornberg et al., Agonist, Investigative Opthalmology & Visual Science, vol.52, issue.11, pp.8108-8124, 2011.
DOI : 10.1167/iovs.10-6418

F. Cruz-guilloty, A. Saeed, S. Duffort, M. Cano, K. Ebrahimi et al., T Cells and Macrophages Responding to Oxidative Damage Cooperate in Pathogenesis of a Mouse Model of Age-Related Macular Degeneration, PLoS ONE, vol.121, issue.1, pp.88201-24586307, 2014.
DOI : 10.1371/journal.pone.0088201.s004

P. Penfold, M. Killingsworth, and S. Sarks, An ultrastructural study of the role of leucocytes and fibroblasts in the breakdown of Bruch's membrane, Aust J Ophthalmol, vol.12, pp.23-31, 1984.

P. Penfold, M. Killingsworth, and S. Sarks, Senile macular degeneration: The involvement of immunocompetent cells, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.121, issue.2
DOI : 10.1007/BF02150948

S. Beatty, H. Koh, M. Phil, D. Henson, and M. Boulton, The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration, Survey of Ophthalmology, vol.45, issue.2, pp.115-149, 2000.
DOI : 10.1016/S0039-6257(00)00140-5

N. Cuenca, L. Fernandez-sanchez, L. Campello, V. Maneu, D. Villa et al., Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases, Progress in Retinal and Eye Research, vol.43, pp.17-75, 2014.
DOI : 10.1016/j.preteyeres.2014.07.001

S. Madsen-bouterse and R. Kowluru, Oxidative stress and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives, Reviews in Endocrine and Metabolic Disorders, vol.36, issue.Suppl. 3, pp.315-342, 2008.
DOI : 10.1007/s11154-008-9090-4

A. Payne, S. Kaja, Y. Naumchuk, N. Kunjukunju, and P. Koulen, Antioxidant Drug Therapy Approaches for Neuroprotection in Chronic Diseases of the Retina, International Journal of Molecular Sciences, vol.15, issue.2, pp.1865-86, 2014.
DOI : 10.3390/ijms15021865

D. Organisciak and D. Vaughan, Retinal light damage: Mechanisms and protection, Progress in Retinal and Eye Research, vol.29, issue.2, pp.113-147, 2010.
DOI : 10.1016/j.preteyeres.2009.11.004

C. Combadière, C. Feumi, R. W. Keller, N. Rodero, M. Pezard et al., CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, Journal of Clinical Investigation, vol.117, issue.10, pp.2920-2928, 2007.
DOI : 10.1172/JCI31692DS1

N. Kolosova, N. Muraleva, A. Zhdankina, N. Stefanova, A. Fursova et al., Prevention of Age-Related Macular Degeneration???Like Retinopathy by Rapamycin in Rats, The American Journal of Pathology, vol.181, issue.2
DOI : 10.1016/j.ajpath.2012.04.018

S. Camelo, Potential Sources and Roles of Adaptive Immunity in Age-Related Macular Degeneration: Shall We Rename AMD into Autoimmune Macular Disease?, Autoimmune Diseases, vol.178, issue.12, pp.532487-24876950, 2014.
DOI : 10.1371/journal.pone.0088201

D. Ferrington, T. Tran, K. Lew, H. Van-remmen, and D. Gregerson, Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells, Experimental Eye Research, vol.83, issue.3, pp.638-50, 2006.
DOI : 10.1016/j.exer.2006.03.003

D. Gregerson, K. Lew, S. Mcpherson, N. Heuss, and D. Ferrington, RPE Cells Resist Bystander Killing by CTLs, but Are Highly Susceptible to Antigen-Dependent CTL Killing, Investigative Opthalmology & Visual Science, vol.47, issue.12, pp.5385-94, 2006.
DOI : 10.1167/iovs.06-0636

M. Ezzat, C. Hann, S. Vuk-pavlovic, and J. Pulido, Immune cells in the human choroid, British Journal of Ophthalmology, vol.92, issue.7, pp.976-80, 2008.
DOI : 10.1136/bjo.2007.129742

A. Hendel and D. Granville, Granzyme B cleavage of fibronectin disrupts endothelial cell adhesion, migration and capillary tube formation, Matrix Biology, vol.32, issue.1, pp.14-22, 2013.
DOI : 10.1016/j.matbio.2012.11.013