O. Callaghan, D. Whatmore, and A. , Brucella genomics as we enter the multi-genome era, Briefings in Functional Genomics, vol.10, issue.6, pp.334-341, 2011.
DOI : 10.1093/bfgp/elr026

A. Martirosyan, E. Moreno, and J. Gorvel, An evolutionary strategy for a stealthy intracellular Brucella pathogen, Immunological Reviews, vol.38, issue.1, pp.211-234, 2011.
DOI : 10.1111/j.1600-065X.2010.00982.x

URL : https://hal.archives-ouvertes.fr/hal-00609655

P. Cardoso, G. Macedo, V. Azevedo, and S. Oliveira, Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system, Microbial Cell Factories, vol.5, issue.1, p.13, 2006.
DOI : 10.1186/1475-2859-5-13

J. Celli, Surviving inside a macrophage: The many ways of Brucella, Research in Microbiology, vol.157, issue.2, pp.93-98, 2006.
DOI : 10.1016/j.resmic.2005.10.002

D. Jong, M. Rolán, H. Tsolis, and R. , Microreview: Innate immune encounters of the (Type) 4th kind: Brucella, Cellular Microbiology, vol.8, issue.2, pp.1195-1202, 2010.
DOI : 10.1111/j.1462-5822.2010.01498.x

M. Seleem, S. Boyle, and N. Sriranganathan, Brucella: A pathogen without classic virulence genes, Veterinary Microbiology, vol.129, issue.1-2, pp.1-14, 2008.
DOI : 10.1016/j.vetmic.2007.11.023

M. Llosa, C. Roy, and C. Dehio, Bacterial type IV secretion systems in human disease, Molecular Microbiology, vol.70, issue.2, pp.141-151, 2009.
DOI : 10.1111/j.1365-2958.2009.06751.x

M. Bhatty, L. Gomez, J. Christie, and P. , The expanding bacterial type IV secretion lexicon, Research in Microbiology, vol.164, issue.6, pp.620-639, 2013.
DOI : 10.1016/j.resmic.2013.03.012

V. Bargen, K. Gorvel, J. Salcedo, and S. , intracellular lifestyle, FEMS Microbiology Reviews, vol.36, issue.3, pp.533-562, 2012.
DOI : 10.1111/j.1574-6976.2012.00334.x

O. Callaghan, D. Cazevieille, C. Allardet-servent, A. Boschiroli, M. Bourg et al., A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis, Molecular Microbiology, vol.1, issue.6, pp.1210-1220, 1999.
DOI : 10.1046/j.1365-2958.1999.01569.x

T. Starr, T. Ng, T. Wehrly, L. Knodler, and J. Celli, Brucella Intracellular Replication Requires Trafficking Through the Late Endosomal/Lysosomal Compartment, Traffic, vol.16, issue.5, pp.678-694, 2008.
DOI : 10.1111/j.1365-2958.2004.04316.x

J. Lavigne, G. Patey, F. Sangari, G. Bourg, M. Ramuz et al., Identification of a New Virulence Factor, BvfA, in Brucella suis, Infection and Immunity, vol.73, issue.9, pp.5524-5529, 2005.
DOI : 10.1128/IAI.73.9.5524-5529.2005

D. Jong, M. Sun, Y. Hartigh, A. Van-dijl, J. Tsolis et al., type IV secretion system, Molecular Microbiology, vol.63, issue.6, pp.1378-1396, 2008.
DOI : 10.1111/j.1365-2958.2008.06487.x

D. Barsy, M. Jamet, A. Filopon, D. Nicolas, C. Laloux et al., Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2, Cellular Microbiology, vol.96, issue.7, pp.1044-1058, 2011.
DOI : 10.1111/j.1462-5822.2011.01601.x

URL : https://hal.archives-ouvertes.fr/hal-00667205

M. Marchesini, C. Herrmann, S. Salcedo, J. Gorvel, and D. Comerci, In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system, Cellular Microbiology, vol.6, issue.8, pp.1261-1274, 2011.
DOI : 10.1111/j.1462-5822.2011.01618.x

URL : https://hal.archives-ouvertes.fr/hal-00667226

S. Myeni, R. Child, T. Ng, J. Kupko, T. Wehrly et al., Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins, PLoS Pathogens, vol.112, issue.1, p.1003556, 2013.
DOI : 10.1371/journal.ppat.1003556.s014

URL : http://doi.org/10.1371/journal.ppat.1003556

S. Salcedo, M. Marchesini, C. Degos, M. Terwagne, V. Bargen et al., BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions, Frontiers in Cellular and Infection Microbiology, vol.3, p.28, 2013.
DOI : 10.3389/fcimb.2013.00028

R. Newman, P. Salunkhe, A. Godzik, and J. Reed, Identification and Characterization of a Novel Bacterial Virulence Factor That Shares Homology with Mammalian Toll/Interleukin-1 Receptor Family Proteins, Infection and Immunity, vol.74, issue.1, pp.594-601, 2006.
DOI : 10.1128/IAI.74.1.594-601.2006

C. Cirl, A. Wieser, M. Yadav, S. Duerr, S. Schubert et al., Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain???containing proteins, Nature Medicine, vol.40, issue.4, pp.399-406, 2008.
DOI : 10.1073/pnas.120163297

T. Kawai and S. Akira, Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity, Immunity, vol.34, issue.5, pp.637-650, 2011.
DOI : 10.1016/j.immuni.2011.05.006

R. Rana, M. Zhang, A. Spear, H. Atkins, and B. Byrne, Bacterial TIR-containing proteins and host innate immune system evasion, Medical Microbiology and Immunology, vol.9, issue.1, pp.1-10, 2013.
DOI : 10.1007/s00430-012-0253-2

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/10024/2/Rana%20et%20al%20Final%20%28ref%20comm%20edit%29.docx

S. Salcedo, M. Marchesini, H. Lelouard, E. Fugier, G. Jolly et al., Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1, Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1, p.21, 2008.
DOI : 10.1371/journal.ppat.0040021.sg008

URL : https://hal.archives-ouvertes.fr/hal-00294210

G. Radhakrishnan and G. Splitter, Biochemical and functional analysis of TIR domain containing protein from Brucella melitensis, Biochemical and Biophysical Research Communications, vol.397, issue.1, pp.59-63, 2010.
DOI : 10.1016/j.bbrc.2010.05.056

G. Radhakrishnan, Q. Yu, J. Harms, and G. Splitter, Brucella TIR Domain-containing Protein Mimics Properties of the Toll-like Receptor Adaptor Protein TIRAP, Journal of Biological Chemistry, vol.284, issue.15, pp.9892-9898, 2009.
DOI : 10.1074/jbc.M805458200

M. Alaidarous, T. Ve, L. Casey, E. Valkov, D. Ericsson et al., Mechanism of Bacterial Interference with TLR4 Signaling by Brucella Toll/Interleukin-1 Receptor Domain-containing Protein TcpB, Journal of Biological Chemistry, vol.289, issue.2, pp.654-668, 2013.
DOI : 10.1074/jbc.M113.523274

A. Chaudhary, K. Ganguly, S. Cabantous, G. Waldo, S. Micheva-viteva et al., The Brucella TIR-like protein TcpB interacts with the death domain of MyD88, Biochemical and Biophysical Research Communications, vol.417, issue.1, pp.299-304, 2012.
DOI : 10.1016/j.bbrc.2011.11.104

D. Sengupta, A. Koblansky, J. Gaines, T. Brown, A. West et al., Subversion of Innate Immune Responses by Brucella through the Targeted Degradation of the TLR Signaling Adapter, MAL, The Journal of Immunology, vol.184, issue.2, pp.956-964, 2010.
DOI : 10.4049/jimmunol.0902008

B. Kaplan-türköz, T. Koelblen, C. Felix, M. Candusso, O. Callaghan et al., effector BtpA/Btp1/TcpB, FEBS Letters, vol.284, issue.21, pp.3412-3416, 2013.
DOI : 10.1016/j.febslet.2013.09.007

G. Snyder, D. Deredge, A. Waldhuber, T. Fresquez, D. Wilkins et al., Crystal Structures of the Toll/Interleukin-1 Receptor (TIR) Domains from the Brucella Protein TcpB and Host Adaptor TIRAP Reveal Mechanisms of Molecular Mimicry, Journal of Biological Chemistry, vol.289, issue.2, pp.669-679, 2014.
DOI : 10.1074/jbc.M113.523407

R. Orchard and N. Alto, Mimicking GEFs: a common theme for bacterial pathogens, Cellular Microbiology, vol.323, issue.1, pp.10-18, 2012.
DOI : 10.1111/j.1462-5822.2011.01703.x

N. Alto, F. Shao, C. Lazar, R. Brost, G. Chua et al., Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions, Cell, vol.124, issue.1, pp.133-145, 2006.
DOI : 10.1016/j.cell.2005.10.031

A. Wattam, D. Abraham, O. Dalay, T. Disz, T. Driscoll et al., PATRIC, the bacterial bioinformatics database and analysis resource, Nucleic Acids Research, vol.42, issue.D1, pp.581-591, 2014.
DOI : 10.1093/nar/gkt1099

Z. Huang, S. Sutton, A. Wallenfang, R. Orchard, X. Wu et al., Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics, Nature Structural & Molecular Biology, vol.54, issue.8, pp.853-860, 2009.
DOI : 10.1038/nsmb.1647

Q. Zhang, C. Zmasek, X. Cai, and A. Godzik, TIR domain-containing adaptor SARM is a late addition to the ongoing microbe???host dialog, Developmental & Comparative Immunology, vol.35, issue.4, pp.461-468, 2011.
DOI : 10.1016/j.dci.2010.11.013

M. Carty, R. Goodbody, M. Schröder, J. Stack, P. Moynagh et al., The human adaptor SARM negatively regulates adaptor protein TRIF???dependent Toll-like receptor signaling, Nature Immunology, vol.171, issue.10, pp.1074-1081, 2006.
DOI : 10.1126/science.278.5343.1612

R. Bulgin, R. B. Garnett, J. Frankel, G. Crepin, V. Berger et al., Bacterial Guanine Nucleotide Exchange Factors SopE-Like and WxxxE Effectors, Infection and Immunity, vol.78, issue.4, pp.1417-1425, 2010.
DOI : 10.1128/IAI.01250-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849395

C. Chen, A. Ettinger, W. Huttner, and S. Doxsey, Resurrecting remnants: the lives of post-mitotic midbodies, Trends in Cell Biology, vol.23, issue.3, pp.118-128, 2013.
DOI : 10.1016/j.tcb.2012.10.012

A. Mukai, E. Mizuno, K. Kobayashi, M. Matsumoto, K. Nakayama et al., Dynamic regulation of ubiquitylation and deubiquitylation at the central spindle during cytokinesis, Journal of Cell Science, vol.121, issue.8, pp.1325-1333, 2008.
DOI : 10.1242/jcs.027417

B. Tekaya, H. Gorvel, J. Dehio, and C. , Bartonella and Brucella?weapons and strategies for stealth attack. Cold Spring Harb Perspect Med 2013

O. Fekonja, M. Ben?ina, and R. Jerala, Toll/Interleukin-1 Receptor Domain Dimers as the Platform for Activation and Enhanced Inhibition of Toll-like Receptor Signaling, Journal of Biological Chemistry, vol.287, issue.37, pp.30993-31002, 2012.
DOI : 10.1074/jbc.M112.376186

J. Smith, M. Khan, D. Magnani, J. Harms, M. Durward et al., Brucella Induces an Unfolded Protein Response via TcpB That Supports Intracellular Replication in Macrophages, PLoS Pathogens, vol.94, issue.2, p.1003785, 2013.
DOI : 10.1371/journal.ppat.1003785.s007

P. Hanson and A. Cashikar, Multivesicular Body Morphogenesis, Annual Review of Cell and Developmental Biology, vol.28, issue.1, pp.337-362, 2012.
DOI : 10.1146/annurev-cellbio-092910-154152

M. Lafarga, M. Berciano, E. Pena, I. Mayo, G. Castan et al., Clastosome: A Subtype of Nuclear Body Enriched in 19S and 20S Proteasomes, Ubiquitin, and Protein Substrates of Proteasome, 19S and 20S Proteasomes, Ubiquitin, and Protein Substrates of Proteasome, pp.2771-2782, 2002.
DOI : 10.1091/mbc.E02-03-0122

R. Kopito, Aggresomes, inclusion bodies and protein aggregation, Trends in Cell Biology, vol.10, issue.12, pp.524-530, 2000.
DOI : 10.1016/S0962-8924(00)01852-3

A. Angot, A. Vergunst, S. Genin, and N. Peeters, Exploitation of Eukaryotic Ubiquitin Signaling Pathways by Effectors Translocated by Bacterial Type III and Type IV Secretion Systems, PLoS Pathogens, vol.17, issue.1, p.3, 2007.
DOI : 0894-0282(2004)017[0846:ANCOUE]2.0.CO;2

H. Ashida, M. Kim, and C. Sasakawa, Exploitation of the host ubiquitin system by human bacterial pathogens, Nature Reviews Microbiology, vol.7, issue.6, pp.399-413, 2014.
DOI : 10.1038/nrmicro3259

G. Radhakrishnan and G. Spliiter, Abstract, BioMolecular Concepts, vol.3, issue.6, pp.571-580
DOI : 10.1515/bmc-2012-0030

K. Aktories, Bacterial protein toxins that modify host regulatory GTPases, Nature Reviews Microbiology, vol.152, issue.7, pp.487-498, 2011.
DOI : 10.1038/nrmicro2592

B. Kenny, S. Ellis, A. Leard, J. Warawa, H. Mellor et al., Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules, Molecular Microbiology, vol.69, issue.4, pp.1095-1107, 2002.
DOI : 10.1046/j.1365-2958.2002.02952.x

A. Arbeloa, R. Bulgin, G. Mackenzie, R. Shaw, M. Pallen et al., Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens, Cellular Microbiology, vol.55, issue.7, pp.1429-1441, 2008.
DOI : 10.1016/j.tcb.2006.07.004

C. Berger, V. Crepin, M. Jepson, A. Arbeloa, and G. Frankel, to control filopodia dynamics, Cellular Microbiology, vol.278, issue.2, pp.309-322, 2009.
DOI : 10.1111/j.1462-5822.2008.01254.x

C. Cirl and T. Miethke, Microbial Toll/interleukin 1 receptor proteins: A new class of virulence factors, International Journal of Medical Microbiology, vol.300, issue.6, pp.396-401, 2010.
DOI : 10.1016/j.ijmm.2010.04.001

M. Truttmann, P. Guye, and C. Dehio, BID-F1 and BID-F2 Domains of Bartonella henselae Effector Protein BepF Trigger Together with BepC the Formation of Invasome Structures, PLoS ONE, vol.81, issue.Pt 18, p.25106, 2011.
DOI : 10.1371/journal.pone.0025106.s007

L. Arbibe, J. Mira, N. Teusch, L. Kline, M. Guha et al., Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway, Nature Immunology, vol.1, issue.6, pp.533-540, 2000.
DOI : 10.1038/82797

T. Van-acker, S. Eyckerman, V. Walle, L. Gerlo, S. Goethals et al., The Small GTPase Arf6 Is Essential for the Tram/Trif Pathway in TLR4 Signaling, Journal of Biological Chemistry, vol.289, issue.3, pp.1364-1376, 2014.
DOI : 10.1074/jbc.M113.499194

H. Uronen-hansson, A. J. Osman, M. Squires, G. Klein, N. Callard et al., Toll-like receptor 2 (TLR2) and TLR4 are present inside human dendritic cells, associated with microtubules and the Golgi apparatus but are not detectable on the cell surface: integrity of microtubules is required for interleukin-12 production in response to internalized bacteria, Immunology, vol.169, issue.2, pp.173-178, 2004.
DOI : 10.1084/jem.20021787