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Abstract  13 

Purpose: accurate tumordelineation in PET images is crucial in oncology. Although recent 14 

methods achieved good results, there is still room for improvement regarding tumors with 15 

complex shapes, low signal-to-noise ratio and high levels of uptake heterogeneity. 16 

Methods: We developed and evaluated an original clustering-based method called 17 

SPEQTACLE (Spatial Positron Emission Quantification of Tumor - AutomatiCLp-norm 18 

Estimation), based onthe fuzzy C-means (FCM)algorithm with a generalization exploiting a 19 

Hilbertian norm to more accurately account for the fuzzy and non-Gaussian distributions of 20 

PET images.An automatic and reproducibleestimation scheme of the norm on an image-by-21 

image basis wasdeveloped.Robustness was assessed by studying the consistency of results 22 

obtained on multiple acquisitions of the NEMA phantom on three different scanners with 23 

varying acquisitions parameters. Accuracy was evaluatedusing classification errors (CE) 24 

onsimulated and clinical images. SPEQTACLE was compared to another FCM 25 

implementation (FLICM)and FLAB. 26 

Results: SPEQTACLE demonstrateda level of robustness similar to FLAB (variability of 27 

14±9% vs. 14±7%, p=0.15) and higher than FLICM (45±18%, p<0.0001), and improved 28 

accuracy with lower CE(14±11%) over bothFLICM (29±29%) and FLAB (22±20%) on 29 

simulated images. Improvement was significant for the more challenging cases with CE of 30 

17±11% for SPEQTACLEvs. 28±22% for FLAB (p=0.009) and 40±35% for FLICM 31 

(p<0.0001). For the clinical cases, SPEQTACLE outperformed FLAB and FLICM (15±6% vs. 32 

37±14% and 30±17%, p<0.004). 33 

Conclusions: SPEQTACLE benefitted from the fully automatic estimation of the norm on a 34 

case-by-case basis.This promising approach will be extended to multimodal imagesand 35 

multi-class estimation in future developments. 36 

Keywords: PET segmentation - clustering methods -Fuzzy C-means-Hilbertian norm. 37 

38 



3 
 

Introduction 39 

Positron Emission Tomography (PET) is established as a powerful tool in numerous 40 

oncology applications1, including target definition in radiotherapy planning2, and therapy 41 

monitoring3, 4, two applications for which tumor delineation is an important step, allowing for 42 

instance further quantification of PET images such as the extraction of image based 43 

biomarkers5–7. Within this context, automatic 3D functional volume delineation presents a 44 

number of advantages relative to manual delineation which is tedious, time-consuming and 45 

suffers from low reproducibility8.PET imaging is characterized by lower spatial resolution (~4-46 

5mm 3D full width at half maximum (FWHM)) and signal-to-noise ratio (SNR) compared to 47 

other medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed 48 

Tomography (CT). In addition, the existing large variability in scanner models and associated 49 

reconstruction algorithms (and their parameterization) leads to PET images with varying 50 

properties of textured noise, contrast, resolution and definition in clinical routine practice, 51 

which becomes acritical issue in multi-centric clinical trials9. Thus, automatic, repeatable and 52 

accurate, but also robustsegmentation of tumor volumes is still challenging.Many methods 53 

based on various image segmentation paradigms, including but not limited to fixed and 54 

adaptive thresholding, active contours and deformable models, region growing, statistical 55 

and Markovian models, watershed transform and gradient, textural features classification, 56 

and fuzzy clustering,have been already proposed10, 11. Despite the recent improvements and 57 

the high level of accuracy and robustness achieved by some of these state-of-the art 58 

methods, there is still room for improvement, especially regarding the delineation of tumors 59 

with complex shapes, high level of uptake heterogeneity, and/or low imageSNR. 60 

Methods including clustering and Bayesian estimation have demonstrated promising 61 

performance in PET tumor volume segmentation. 62 

On the one hand, in Bayesian segmentation methods, statistical distributions (also called 63 

noise distributions)of the intensities are modeled by summarizing the histogram of the 64 
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images considering a reduced number of parameters to estimate. These methods provide 65 

automatic algorithms allowing noise modeling and prior solution selection,which allows them 66 

in turn to be less sensitive to noise than other segmentation approaches due to their 67 

statistical modeling12.Bayesian segmentation methods can be viewed as regularized “blind” 68 

statistical approachesin which the prior probability constraints the solution. This prior 69 

distribution can be defined in different ways according to the targeted application, for 70 

instance usinghidden Markov field or chain models where the prior distribution is a Markov 71 

field distribution13. Relatively recent examples of such methods specifically developed for 72 

PET include Fuzzy Hidden Markov Chains (FHMC) and the Fuzzy Locally Adaptive Bayesian 73 

(FLAB) methods. In FHMC, the prior distribution was modeled using fuzzy hidden Markov 74 

chains14, whereas in FLAB the 3D neighborhood of a given voxel was used to locally 75 

estimate the fuzzy measurefor each voxel 15, 16, leading to a more accurate segmentation of 76 

small structures. FLAB can be considered to be one of the state-of-the-art methods for PET, 77 

according to its wide success due to its robustness, its repeatability and its overall accuracy 78 

demonstrated on both simulated and various clinical datasets including radiotracers of 79 

hypoxia and cellular proliferation 8, 16–23. 80 

On the other hand, clustering methods aim at partitioning the images into clusters depending 81 

on the statistical properties of the voxel intensities. The main interest of clustering methods 82 

compared to Bayesian methods lies in their low computational cost, as well as easier 83 

parameters estimation and overall implementation. The most known and used clustering 84 

method is the K-means clustering which has been extended to Fuzzy C-means clustering 85 

(FCM) by considering a fuzzy instead of a deterministic measure on the cluster’s 86 

membership.The Fuzzy C-means (FCM) algorithm has several advantages including 87 

flexibility and low computational cost. However, it fails to correctly address non-Gaussian 88 

noise, geometrical differences between clusters, spatial dependency between voxels, as well 89 

as the variability of fuzziness and noise properties or textures of the PET images that arise 90 
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from the large range of PET image reconstruction algorithms and post-reconstruction filtering 91 

schemes currently used in clinical practice.  92 

Regarding FCM more specifically, amongst the other different generalizations of FCM, some 93 

incorporate a more accurate description of the clusters’ geometry in the data model, for 94 

example by replacing the Euclidian norm by the Mahalanobis distance24. This method 95 

requires estimating the covariance matrices of each cluster additionally to the centers of the 96 

clusters and therefore takes into account that the clusters are not necessarily of identical 97 

sizes. Another version uses the Lebesgue 
1l  and

l  norms instead of the Euclidian norm25. 98 

Other authors have proposed to replace this Euclidian norm by a Hilbertiankernel26, which is 99 

more reliable in cases where the data does not follow a Gaussian mixture model. Finally, 100 

other authors have replaced the probability measure by evidential measure as in the 101 

“possibilistic” FCM27. This last approach is interesting within the context of evidential theory, 102 

however the way hard decision is carried out is heuristic and difficult to justify28. Amongst the 103 

methods exploiting the spatial information, it was proposed to generalize FCM by introducing 104 

spatial constraints to regularize it29. Other methods, such as the Fuzzy Local Information C-105 

Means (FLICM)algorithm, incorporate in the minimization criteria the distance between 106 

voxels30. 107 

The goal of this work was to focus on FCM and to propose a novel generalization in order to 108 

improve on the accuracy without sacrificing on robustness of PET tumor segmentation 109 

results compared to current state-of-the-art techniques, for challenging heterogeneous 110 

tumours.We have chosen to generalize FCM using a Hilbertian kernel,with the norm 111 

parameter not set empirically or a prioribut rather estimated on an image-by-image basis, 112 

using a fully automatic scheme based on a likelihood maximization algorithm. The new 113 

algorithm was compared to FLICM and FLAB in terms of robustness and accuracy on real 114 

and simulated PET image datasets. 115 
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Materials and methods 116 

A. FCM algorithm and its extensions 117 

Classical FCM algorithm 118 

The FCM algorithm consists in finding for each class  Ci ,,1 , where C is the number of 119 

classes, and for each voxel Vu of the finite set of voxels
3V , the centers i   and 120 

the degrees of belief ]1,0[, iup  minimizing the criterion: 121 


 


Vu

C

i

iu

m

iu yp
1

2

,    (1) 122 

under the constraint: 1
1

, 


C

i

m

iup , 123 

where uy  is the observed intensity for the voxel u  and the parameter 1m  controls the 124 

fuzzy behavior and is usually chosen as 2m . 125 

Thedetails regarding this minimization are provided in appendix A. 126 

Regarding the segmentation, for each voxel Vu , the class  Ci ,,1  maximizing the 127 

probability iup ,  is chosen. This decision step is the same for the generalized FCM (GFCM). 128 

FCM as a Bayesian inference method 129 

The traditional “hard” K-means clustering is equivalent to a Bayesian method where the 130 

observations are modeled as a Gaussian mixture. FCM clustering can also be rewritten in 131 

order to highlight a prior distribution regarding the parameters iup , and i , and a likelihood 132 

associating observations with the parameters. This idea has already been exploited by 133 

choosing prior distributions to optimize the estimation31. The minimization of eq. (1) is 134 

equivalent to the maximization of: 135 
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,  , where f is a positive function such that P  is a probability 136 

density according to the observed variables Vuuy )(  called “likelihood”. From statistics, the 137 

maximization of P is equivalent to a likelihood maximization and is exhaustive (i.e. uses the 138 

entire information of the sample) if the density of Vuuy )(  maximizes the Shannon entropy. 139 

Moreover, one can show that a distribution whose form is given by 140 
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1
. An elliptical distribution is entirely 142 

determined by its functional parameter f , its center and its dispersion. Amongst the elliptical 143 

distributions with the same center and dispersion, one can show that the maximum entropy is 144 

reached if f is an exponential function. 145 

Consequently, in this case, the minimization of eq. (1) is equivalent to the maximization of: 146 
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Consequently, conditionally to the parameters, the observations uy  are independent and 150 

Gaussian distributed as: 151 
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Whereas the prior distribution for parameters is given by: 153 
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 154 

Drawbacks of the classical FCM 155 

The previous theory results in two major drawbacks: 156 

(a). FCM clustering is equivalent to a maximum posterior estimation when the 157 

observations follow a Gaussian distribution conditionally to the parameters. 158 

Consequently, FCM leads to inaccurate estimation when the data are not Gaussian. 159 

(b). Similarly, FCM clustering assumes that the observations are independent 160 

conditionally to the parameters, leading to inaccurate segmentation in the presence of 161 

spatial dependencies. 162 

B. SPEQTACLE algorithm: an automatic Generalized FCM algorithm (GFCM) 163 

In this work we investigated the advantage of generalizing FCM by considering the Hilbertian164 

pl -norm instead of the Euclidian norm and providing an associated scheme that enables a 165 

fully automated estimation of the norm parameter for optimal delineation on a case-by-case 166 

basis, in order to reduce user interaction and avoid empirical optimization. Indeed, a user-167 



9 
 

defined choice of the norm parameter based on visual analysis seems challenging because 168 

of its non-intuitive nature, and would suffer from low reproducibility. An alternative would be 169 

to optimize empirically the norm value on a training dataset, although it is unlikely that a 170 

single norm value would be appropriate for all cases. We have consequently developed an 171 

approach to automatically estimate the norm value for each image.  172 

The proposed algorithm is called Spatial Positron Emission Quantification of Tumor 173 

volume:AutomatiCLp-norm Estimation (SPEQTACLE). 174 

Principle of GFCM algorithm 175 

In the GFCM algorithm, the minimization criterion becomes: 176 


 


Vu

C

i

iu

m

iu yp
1

,


    (4) 177 

where, the norm parameter 1  and with no solution for 1 . Moreover, the cluster centers 178 

i cannot be estimated explicitly when 2 , whereas 2  corresponds to the standard 179 

FCM. When 2 and 2 , the centers are computed using the Newton-Raphson 180 

algorithm and gradient descent respectively (for details we refer the reader to Appendix B. 181 

and C.). 182 

Generalized Gaussian distribution 183 

We assume that conditionally on the parameters Cii 1)(  and Ciiup 1, )(  the observation is 184 

approximately distributed as a generalized Gaussian distribution whose density is 185 
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 and a shape  . 187 

Estimation of the norm 188 

The estimation technique presented in the next section is based on the above generalized 189 

Gaussian distribution. Contrary to the Gaussian case, it is only an approximation; indeed the 190 

expression (4) can be expressed as a product of 


C

i

m

iup
1

,  and a term of form 


uy only in 191 

the Gaussian case, which corresponds to 2 . However, it becomes a generalized 192 

Gaussian distribution if 1, iup  holds for only one class. This approximation is valid as long 193 

as the probabilities )( ,iup are not too far from the configuration 1, iup . Consequently, the 194 

norm parameter has to be estimated from an area for which one can consider that 1, iup195 

holds. In practice, this area was automatically selected using a background subtraction 196 

method in order to provide a first guess of the tumor region, as recently proposed32. In order 197 

to simplify the estimation task, we have chosen to estimate the norm for this background-198 

subtracted region, which is likely to correspond to a first estimation of the tumor region, and 199 

set a single norm parameter value for all classes. 200 

The next step involves the estimation of the different parameters using likelihood 201 

maximization.  202 
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First, one can assume that these values do not depend on u  and secondly, that the 204 

distribution of the observations uy  in the selected area is approximately the generalized 205 

Gaussian distribution. Let Wuuy )( be the sample from the selected areaW , the maximum 206 

likelihood estimators of ,  and , denoted
ML̂ , 

ML̂ and 
ML̂ are solutions of the system: 207 

a. 
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yy 0ˆ)ˆsgn(
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where, W  is the cardinality of W and  is the log-derivative of the Eulerian function (see 211 

AppendixD). 212 

These equations are not linear and cannot be solved independently. Consequently, the 213 

solution is estimated by using a combination of a variational method and the Newton-214 

Raphson algorithm as outlined below: 215 

1. Let 
)0( , 

)0( and 
)0( be the initial values ; 216 

2.  From 
)( p , compute 

)1( p  by solving 
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4.  From 
)1( p  and 

)1( p , compute 
)1( p by solving220 
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 221 

5.  Repeat steps 2, 3 and 4 until convergence. 222 

Although such generalized Gaussian distributions have properties that allow for convergence 223 

of the maximum likelihood estimation, the stopping criteria has to be defined. One could 224 

assume that the estimation can be stopped when the successive values of 
)( p  (resp. 

)( p225 

and 
)( p ) are sufficiently close to each other, using the absolute distances as stopping 226 

criteria. However, the values of the parameters can be close, whereas the distance between 227 

the resulting distributions may be large. Indeed, the smaller  is, the more sensitive to the 228 

value of   is the resulting density. To overcome this drawback, we used a more appropriate 229 

distance; namely the distance between distributions rather than the distance between 230 

parameters’ values. This distance is defined from the Fisher information matrix(Appendix E). 231 

It has been previously shown that the set of given parameterized distributions is a 232 

Riemannian manifold whose metric tensor is given by the Fisher information matrix33. More 233 

precisely, let    :)(ypy  be a smooth manifold of statistical distributions 234 

parameterized by an open set
k , the distance between “close” distributions 235 

)( ypy   and )(  dypy   is given by: 236 

 dIddl )()( * , where )(I is the Fisher information matrix and *)( d is the transpose 237 

of the vector d . 238 
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For the generalized Gaussian random variables that we use in SPEQTACLE, the Fisher 239 

information relative to the position parameter  , the dispersion parameter   and the norm 240 

parameter   are given respectively by:  241 
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where,  and   are the Eulerian function and its log-derivative respectively. In the norm 244 

estimation algorithm, we evaluate the distance between distributions twice; namely when 245 

)( p and 
)( p  are recomputed. It maybe also possible to evaluate the distance when 

)( p is 246 

recomputed.However, if the two other parameter sequences 
)( p  and 

)( p  do not vary, one 247 

can reliably assume that the parameter sequence 
)( p does not vary either. As the Fisher 248 

information relative to   is given by
2
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distance between two generalized Gaussian distributions ),,( yp  and 250 
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Regarding the parameter , the integration of the Fisher metric is not explicit and requires 254 

time consuming numerical methods. We have used the Kullback-information “metric” instead, 255 

as a good approximation of the Fisher metric when the consecutive values of 
)( p  are close 256 

(Appendix E). When   and  are set, the Kullback information from ),,( )(  pyp  to 257 

),,( )1(  pyp is given by: 258 
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Finally, in the maximum likelihood estimation algorithm, ),( )1()( ppD  and ):( )()1( ppK  
260 

are evaluated when the value of 
)1( p and 

)1( p are respectively computed. The stopping 261 

rule is a fixed threshold value  =10-7small enough to ensure convergence. 262 

C. Algorithm evaluation methodology 263 

Repeatability and dependency of the norm estimation on initial tumor region 264 

In order to evaluate the repeatability of SPEQTACLE, the whole process (background-265 

subtracted area definition used to estimate the norm, followed by the iterative estimation of 266 

the norm and the modified FCM clustering) was applied 20 times to the same tumorimages. 267 

In order to investigate the dependency of the estimated norm value on the background-268 

subtracted region, we made smaller or larger the result of this fully automated procedure 32 269 

by one to three voxels in all directions and relaunched the estimation procedure on the new 270 

area. 271 

Robustness assessment 272 

We firstevaluated the robustness of the SPEQTACLE algorithm. Robustness was defined as 273 

the ability of the automatic algorithm to provide consistent results for a given known object of 274 
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interest, considering varying image properties such as spatial sampling (voxel size), SNR, 275 

contrast, texture, filtering, etc. This evaluation was carried out using a dataset of phantoms 276 

containing homogeneous spheres on homogeneous background that were acquired in 277 

different PET/CT scanners, each with varyingacquisition and reconstruction parameters (see 278 

section D. Datasets).Homogeneous spheres on homogeneous backgroundare not 279 

appropriate for the evaluation of absolute accuracy since they represent a simplisticset-up 280 

and because of thebias due to cold sphere walls34, 35. On the other hand, they are well suited 281 

for the task of robustness estimationsince any present bias presentis the same for all 282 

acquisitions and they can provide a wide range in imaging settings for a given known object. 283 

The four spheres with largest diameters (37, 28, 22 and 17 mm) were segmented 284 

individually. The 13 and 10mm spheres were not included in the analysis because they were 285 

not filled in all acquisitions and are often too small with respect to the reconstructed voxel 286 

size to provide meaningfulresults. 287 

Accuracy assessment 288 

To evaluate the accuracy of the new algorithm relative to that of current state-of-the-art 289 

methods more challenging cases such as relatively large, complex-shaped and/or 290 

heterogeneous tumors were used considering both simulated realistic tumors and clinical 291 

tumor cases (see section D. datasets). 292 

Evaluation metrics 293 

For the robustness assessment, since the objects used are simple homogeneous spheres 294 

and the goal is to assess the consistency of results over various acquisitions of the same 295 

object and not absolute accuracy, the standard deviation of the determined volumes for a 296 

given sphere across the entire dataset (all scanners, all configurations) was reported as a 297 

measure of robustness. 298 

For the accuracy evaluation, the classifications errors (CE) were used. In the simulated 299 

dataset, CE were calculated relatively to the known ground truth. In the clinical datasets, CE 300 
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were calculated relatively toa surrogate of truth obtained through a statistical consensus 301 

using the STAPLE (Simultaneous Truth And Performance Level Estimation) algorithm 36 302 

applied to three manual delineations performed by experts with similar training and 303 

experience. CE may result from two contributions: the false negatives, the number of 304 

misclassified voxels within the ground truth, and the false positives, the number of 305 

misclassified voxels outside of the ground truth. CE as a percentage is then calculated as the 306 

sum of positive and negative misclassified voxels, divided by the number of voxels defining 307 

the ground truth15. CE were reported as mean±SD as well as with box-and-whisker plots in 308 

the figures. 309 

Comparison with other methods 310 

Within this evaluation framework, the proposed algorithm SPEQTACLE was compared to a 311 

couple of state-of-the-art methods which are improvement of the classical FCM: the Fuzzy 312 

Locally Adaptive Bayesian (FLAB) 16and the Fuzzy Local Information C-means 313 

(FLICM)30.Because the standard FCM has already been extensively evaluated and 314 

compared to these extensions or other previous segmentation approaches,including on PET 315 

images15, 16, 37, it was not included in the present analysis. 316 

FLAB combines a fuzzy measure with a Gaussian mixture model, and a stochastic 317 

estimation of the parameters from a FCM-based initialization. This method was developed 318 

initially for PET and thoroughly validated on both simulated and clinical datasets16, 17, 319 

23.FLICM is a recent FCM algorithm with a weighted norm taking into account outliers due to 320 

the noise30. This method uses two parameters: a regularization parameter and the size of the 321 

surrounding kernel. In the present work, we have set the parameter regularization equal to 1 322 

and the kernel radius equal to 3 voxels, which are the recommended values30 although they 323 

have not been optimized specifically for PET. 324 

For all methods, the object of interest is first isolated in a 3D region of interest (ROI) 325 

containing the tumor, similarly as previously detailed for FLAB15. The number of 326 
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classes/clustersused was 2 for the robustness evaluation (homogeneous spheres) and 3 for 327 

the accuracy evaluation, in order to take into account potential tumor uptake heterogeneity. 328 

The two tumor classes were then unified for the error calculation with respect to the binary 329 

ground-truth (tumor/background).Thus, all algorithms were applied considering the same 330 

number of classes/clustersfor a given image.  331 

The Wilcoxon rank sum testwas used to compare theresults between methods. P-values 332 

below 0.05 were considered significant. 333 

D. Datasets 334 

Homogeneous spheres phantoms 335 

The dataset used for the robustness evaluation consists of NEMA phantoms containing 336 

spheres of various sizes (37, 28, 22, 17, 13, 10 mm)and filled with 18F-FDG, 337 

thatwereacquired in three different PET/CT scanners: two PHILIPS scanners (a standard 338 

GEMINI and a time-of-flight (TOF) GEMINI), anda SIEMENSBiograph 16 scanner8. The 339 

standard iterative reconstruction algorithms associated with each scanner were used with 340 

their usual parameters: Time-of-Flight Maximum Likelihood-Expectation Maximization (TF 341 

ML-EM) for the GEMINI TOF, 3D Row Action Maximum Likelihood Algorithm (RAMLA) (2 342 

iterations, relaxation parameter 0.05, Gaussian post-filteringwith 5mm FWHM) for the 343 

GEMINI, and Fourier rebinning (FORE) followed by Ordered Subsets Expectation 344 

Maximization (OSEM) (4 iterations, 8 subsets, Gaussian post-filtering with 5mm FWHM) for 345 

the Biograph16. All PET images were reconstructed using CT-based attenuation correction, 346 

as well as scatter and random coincidences. For each scanner, two different values for the 347 

following acquisition parameters and reconstruction settingswere considered: the contrast 348 

between the sphere and the background (4:1 and 8:1), the voxel size in the reconstruction 349 

matrix (2×2×2 and 4×4×4 or 5.33×5.33×2 mm3) and the noise level (2 and 5 min of listmode 350 

data). Note that for the GEMINI acquisitions, the 28mm sphere was missingin the physical 351 

phantom. Figure 1 illustrates the images obtained for some of the acquisitions. 352 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig 1. Examples of phantoms acquisitions: (a-b) the PHILIPS GEMINI TOF scanner with 353 

5min acquisitionsand (a) ratio 8:1, voxels 2×2×2 mm3, (b) ratio 4:1, 4×4×4 mm3. (c-d) the 354 

SIEMENS scanner with 5min acquisitions and (c) ratio 8:1,voxels 2×2×2 mm3, (d) ratio 4:1, 355 

5.33×5.33×2 mm3. (e-f) the PHILIPS GEMINI scanner with ratio 8:1, voxels 4×4×4 mm3, and 356 

(e) 5min acquisition, (f) 2 min acquisition. 357 

 358 

Simulated PET images 359 

A set of 34 simulated PET tumor images with a wide range of contrast, noise levels, uptake 360 

heterogeneity and shape complexity was generated following a previously described 361 

methodology to obtain realistic complex shapes and uptake distributions of tumors for which 362 



19 
 

the exact ground-truth on a voxel-by-voxel basis is known38, 39. This dataset was built with 363 

relatively more challenging cases compared to previously conducted evaluations16, in order 364 

to provide more complex tumor cases with combination of low SNR, high levels of 365 

heterogeneities and complex shapes. The important steps of the procedure used to generate 366 

these images is outlined below, and the reader is referred to38, 39 for more details. 367 

Each clinical tumor was first manually delineated on a clinical PET image by a nuclear 368 

medicine expert, thus creating a voxelized volume that represents the ground-truth of the 369 

tumor model used in the simulation. The activity levels attributed to each of the tumor parts 370 

were derived from the activity measured in the same areas of the tumor in the corresponding 371 

patient images. This ground-truth tumor structure was subsequently transformed into a Non-372 

Uniform Rational B-Splines (NURBS) volume via RhinocerosTM (CADLINK software), for 373 

insertion into the NCAT phantom 40attenuation maps at the same approximate position as 374 

located in the patient. No respiratory or cardiac motions were considered. Simulations using 375 

a model of the Philips PET/CT scanner previously validated with GATE (Geant4 Application 376 

for Tomography Emission) 41were carried out. A total of 45 million coincidences were 377 

simulated corresponding to the statistics of a clinical acquisition over a single axial 18 cm 378 

field of view. Images were subsequently reconstructed using the One-Pass List mode 379 

Expectation Maximization (OPL-EM) (7 iterations, 1 subset). In some cases, the same 3D 380 

tumor shape was produced with different levels of contrast and heterogeneity, voxel sizes 381 

(4×4×4 and2×2×2 mm3) and/or a different number of coincidences (45M or 20M) for different 382 

SNR realizations.Figure 2 illustrates some of the simulated tumors. The first two cases (fig. 383 

2a-b) present relatively simpler shapes, higher contrast and SNR, whereas fig. 2c and 2d 384 

present more complex shapes and higher levels of noise and uptake heterogeneity. 385 



20 
 

  

(a) (b) 

  

(c) (d) 

Fig 2. Four examples of simulated tumors. Red contours correspond to the simulation ground 386 

truth showing both external contours and sub-volumes heterogeneity. 387 

Clinical PET images 388 

Nine non-Small Cell Lung Cancer (NSCLC) tumors were chosen for their challenging nature 389 

with complex shapes and uptake heterogeneity.Patients fasted for at least 6 hours before 3D 390 

PET data was acquired on a Philips GEMINI PET/CT scanner without motion correction, 391 

60±4 min after injection of 5MBq/kg of 18F-FDG. Images were reconstructed with the 3D 392 

RAMLA algorithm (2 iterations, relaxation parameter 0.05, post-filtering with a Gaussian of 5 393 

mm FWHM) and a voxel size of 4×4×4 mm3, using CT-based attenuation correction, scatter 394 

and random correction42. In the absence of ground-truth for these volumes, 3 different 395 

experts delineated each tumor slice-by-slice with free display settings. A statistical 396 

consensus of the segmentations was then derived using the STAPLE algorithm to generate 397 

one surrogate of truth (fig. 3). 398 
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(a) Case 1 (b) Case 2 (c) Case 3 

   

(d) Case 4 (e) Case 5 (f) Case 6 

   

(g) Case 7 (h) Case 8 (i) Case 9 

Fig 3. (a-i) Clinical images of 9 NSCLC tumors. Red contours correspond to the statistical 399 

consensus of 3 different manual delineations. 400 

Results 401 

Repeatability and dependency on initially selected tumor region 402 

The procedure was found perfectly repeatable with no variations in the resulting 403 

segmentations on repeated applications to the same (previously defined) region of interest. 404 

In addition, enlarging or reducing the size of the initial background-subtracted area by 1 to 3 405 

voxels in all directions (equivalent to shrinking or increasing of the size of the region used to 406 

estimate the norm by 5 to 15%) resulted in only minor variations in the estimated norm value 407 
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(3±11%, range –10% to +16%), and even smaller variations in the resulting segmentation 408 

(2±5%, range –4% to +7%). A substantial degradation of the segmentation results (20% 409 

difference) was observed when the reduction(area not covering sufficiently the tumor) or 410 

enlargement (too much background incorporated) of the initially estimated area exceeded 411 

50%. 412 

Robustness 413 

The robustness of FLAB and standard FCMhas already been reported extensively8. In the 414 

current work we focused on three scanners and the 4 largest spheres, comparing 415 

SPEQTACLE to FLAB and FLICM.Figure4presents the robustness of each method, 416 

quantified bythe distributions of resulting volumes for each sphere as box-and-whisker 417 

plotsacross the entire dataset (3 scanners, all acquisition and reconstruction parameters). 418 

Although the accuracy was not under evaluation here, the true volume was also plotted for 419 

reference. 420 

 421 
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Fig 4. Distributions of volumes determined by the three methods under comparison for the 422 

four spheres of 37, 28, 22 and 17 mm in diameter across the entire robustness dataset. Box-423 

and-whisker plots provide lower to upper quartile (25 to 75 percentile, central box), the 424 

median (middle line of the box) and the minimum to the maximum value, excluding "outlier 425 

values” which are displayed as separate dots. 426 

 427 

The robustness performance of SPEQTACLE was satisfactory given the very large range of 428 

image characteristics. It was very similar and not statistically different (p=0.15) from FLAB 429 

with standard deviations of 5.4%, 16.9%, 12.7% and 26.6% for SPEQTACLE vs. 5.4%, 430 

11.5%, 20.3%, and 19.3% for FLAB (for the 37, 28, 22 and 17mm spheres respectively). It 431 

should be emphasized that there were 2 outliers for the 17mm sphere and 1 for the 22 mm 432 

sphere (fig. 4). These were associated with images of some of the acquisitions for which the 433 

spheres were barely visible and spatially sampled with large voxels (see fig. 1b for an 434 

example), which explains the substantial deviation observed for these specific cases. When 435 

excluding these outliers, the robustness of SPEQTACLE increased with lower standard 436 

deviations of 7.9% and 18.8% for the 22 and 17mm sphere respectively. 437 

FLICM exhibited significantly lower robustness (p<0.0001) than FLAB and SPEQTACLE. For 438 

the spheres 28, 22 and 17 mm, this was mostly due to segmentation failures in several cases 439 

for sphere diameters ≤28 mm, with the segmentation filling the entire ROI leading to 440 

extremely large volumes. For these complete failures, we limited the resulting volume to 441 

twice the expected volume of the sphere, leading to standard deviations of 68.9%, 40.9% 442 

and 43.7% for the spheres of 28, 22 and 17mm respectively. However for the largest sphere 443 

(37 mm in diameter), the standard deviation was also higher (26.8%) than SPEQTACLE and 444 

FLAB, without an associated segmentation failure, but rather very different results depending 445 

on the different image characteristics considered. 446 
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Accuracy 447 

  

(a) (b) 

  

(c) (d) 

Fig. 5 (a) Box-and-whisker plot of the norm parameter estimated by SPEQTACLE for the 448 

entire set of simulated PET images. (b-d) Comparison of error rates for the three methods 449 

with box-and-whisker plots, for (b) the 34 simulated tumors PET images, (c) the subset of 450 

cases with estimated norm<3 and (d) cases with norm>3. 451 

Figure5a shows the distribution of the values for the norm parameter as estimated by 452 

SPEQTACLE. We recall that a value of 2corresponds to the standard FCM case. Almost half 453 

the cases considered had an estimated norm between 3 and 6. Five cases led to estimated 454 

norm values of 9 to 19. Given this distribution, we report the accuracy for the entire dataset, 455 

then for the subset of cases with norm<3 (15 cases) and finally for >3 (19 cases), as we can 456 
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reasonably expect a larger improvement using SPEQTACLE over the two other algorithms 457 

for higher norm values. 458 

Figure 5bshows the classification errorsresults obtained by the threemethods under 459 

comparison, for the entire set of 34 images.SPEQTACLE was found to provide lower CE 460 

than FLAB (p=0.0044) and FLICM (p<0.0001). FLAB, FLICM and SPEQTACLE led to CE of 461 

21.8±19.8% (median 14.5%, range 1.2 – 70.2%), 29±29% (median 22.3%, range 3.9 – 462 

100.0%) and 14.4±10.6% (median 12.5%, range 1.3 – 37.9%)respectively. No errorsabove 463 

40% were observed for SPEQTACLE contrary to FLAB (up to 50-70% errors) and FLICM 464 

that even had four cases with >100% errors (complete failure of the segmentation, CE limited 465 

to 100%). SPEQTACLE had more cases with errors below 10% and between 10% and 20% 466 

than FLAB and FLICM, and fewer cases with errors between 20% and 50%. 467 

Figure 5c provides the classification errors for the 15 images for which the estimated norm 468 

was <3.In this first subset, although SPEQTACLE led to the best results (10.5±8.5%, median 469 

8.3%, range 1.3 – 31%) with significantly lower errors than FLICM (15.3±9.1%, median 470 

12.9%, range 4.2 – 34.8%, p=0.0215), no significant differences were found between 471 

SPEQTACLE and FLAB (14.5±13.6%, median 9.5%, range 1.2 – 46.1%, p=0.22). No errors 472 

above 50% were observed for any method.It should be emphasized that despite differences 473 

between the three methods, all three achieved high accuracy performance with <20% CE for 474 

the majority of cases. 475 

Figure 5dprovides the classification errors for the second subset of 19 images for which the 476 

estimated norm was >3.In this dataset of clearly more challenging cases, with an error rate of 477 

17.4±11.3% (median 21%, range 1.4 – 37.9%), SPEQTACLE significantly outperformed all 478 

other methods:FLAB with 27.6±22.2% (median 22.2%, range 1.4 – 70.2%) (p=0.0092) and 479 

FLICM with 39.9±34.6% (median 30.5%, range 3.9 – 100.0%) (p<0.0001).No errors above 480 

50% were observed for SPEQTACLE contrary to FLAB and FLICM, and there were less 481 

errors between 20 and 50% for SPEQTACLE than for FLAB and FLICM. Overall, the 482 
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accuracy achieved by SPEQTACLE in this dataset of very challenging cases was 483 

satisfactory, with a maximum CE below 38% and a mean of17%. Figure 6 provides some 484 

visual examples of segmentation results for the simulated tumors. 485 

Ground-truth 

 

Norm=4 

 

Norm=5 

 

Norm=10 

 

Norm = 18.5 

FLAB 

 

CE=35% 

 

CE=28% 
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CE=25% 

 

CE=29% 

 

CE=40% 

SPEQTACLE 

 

CE=22% 

 

CE=17% 

 

CE=23% 

 

CE=30% 
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Fig 6. Segmentation results for (a-c) the same simulated tumor with increasing complexity: 486 

combinations of noise levels and heterogeneity both within the tumor (contrast between the 487 

various sub-volumes of the tumor) or in terms of overall contrast between the tumor and the 488 

background. These configurations were found to correspond to increasing estimated norm 489 

values: (a) 4, (b) 5 and (c) 10. (d)presents a tumor with complex shape and high levels of 490 

heterogeneity for which the norm was estimated at 18.45. First row is ground-truth (red) 491 

whereas second, third and fourth rows are results from FLAB (green), FLICM (magenta) and 492 

SPEQTACLE (blue). 493 

Figure 7shows the estimated norm values (fig. 7a) and the classification errors(fig. 7b) for the 494 

nine clinical images.Norm values estimated by SPEQTACLE were between 2 and 9, with 495 

most of them being >3 (7 out of 9 cases). The best performance was obtained with 496 

SPEQTACLE with significantly (p<0.004) lower errors (mean 14.9±6.1%, range 2.9 – 23%) 497 

with respect to the STAPLE-derived consensus of manual delineations, compared to FLAB 498 

(mean 37.3±14.3%, range 12 – 55%) and FLICM (30.4±17.4%, range 13.2 – 63%). 499 

  

(a) (b) 

Fig 7. (a) Box-and-whisker plot of the norm parameter estimated by SPEQTACLE and (b) CE 500 

for the three methods, for the clinical dataset. 501 

Figure 8 shows the results of segmentation for all 9 clinical cases.For cases 3 and 9, the 502 

three methods led to similar results, as the level of heterogeneity is relatively lower with 503 
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respect to the high overall contrast between the tumor and the surrounding background. On 504 

the one hand, for cases 1, 4, 5 and 6, it was observed that FLAB underestimated the spatial 505 

extent selected by the experts, by focusing on the high intensity uptake region, whereas 506 

FLICM led to results closer to the manual contours. On the other hand, for cases 2, 7 and 8, 507 

on the contrary FLAB slightly overestimated the manual contours, whereas FLICM 508 

underestimated it, missing the large areas with lower uptake. In all cases, SPEQTACLE 509 

demonstrated higheraccuracywith results closer to the manual delineations. 510 

Case Ground truth FLAB FLICM SPEQTACLE 

(a) 

    

(b) 

    

(c) 

    

Fig 8. Examples of delineationsfor clinical cases (a) 4, (b) 7 and (c) 8 from Fig. 3 (d), (g) and 511 

(h): consensus of manual (red), FLAB (green), FLICM (magenta) and SPEQTACLE (blue). 512 

Discussion 513 

Although promising results for PET tumor delineation in a realistic setting beyond the 514 

validation using simple cases (spherical and/or homogeneous uptakes)have been recently 515 

achieved by several methods11there is still room for improvement, particularly in the case of 516 
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highly heterogeneous and complexshapes.The use of the fuzzy C-means clustering 517 

algorithm for delineation of PET tumors has been considered previouslyshowing a limited 518 

performance both in accuracy 15, 43, 44and robustness8. Among the recent methods dedicated 519 

to PET that demonstrated promising accuracy, the fuzzy C-means algorithm was improved 520 

using a rather complex pipelinecombining spatial correlation modeling and pre-processing in 521 

the wavelet domain 44. In the presented work, we rather focused on the generalization and 522 

full automation of the FCM approach to improve its accuracy and its ability to deal with 523 

challenging and complex PET tumor images, by implementing an estimation of the norm on a 524 

case-by-case basis. The improved accuracy results that we obtained on the validation 525 

datasets suggest that the optimal norm parameter can indeed be different for each PET 526 

tumor image and can vary substantially across cases, making anautomatic estimation 527 

essential in the accuracy of the FCM segmentation results. 528 

It should be emphasized that SPEQTACLE did not undergo any pre-processing or pre-529 

optimization and that no parameter was set or chosen to optimize the obtained results on the 530 

evaluation datasets (either phantoms, realistic simulated or clinical tumors).The improved 531 

accuracy that SPEQTACLE achieved is thereforeentirely due to its automatic estimation 532 

framework and its associated ability to adapt its norm parameter to varying properties of the 533 

image. The advantage of SPEQTACLE compared to other fuzzy clustering-based methods 534 

such as FLAB or FLICM thus lies on its ability to estimate reliably the norm parameter value 535 

on a case-by-case basis. In addition, the proposed norm estimation scheme is deterministic 536 

and convergent, therefore the repeatability of the algorithm was found to be perfect with zero 537 

variability in the results on repeated segmentations of the same image, which is an important 538 

point to ensure clinical acceptance for use by the physicians. In addition, the estimation of 539 

the norm was also found to be robust with respect to slightly larger or smaller initial 540 

determination of the tumor class using a background-subtraction approach32. In order to 541 

reach substantial differences in the segmentation results, this area had to be enlarged or 542 
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shrunk by more than 50%, which is very unlikely to occurunless highly inaccurate methods 543 

are used to define the initial region. 544 

We showed that SPEQTACLE led to significantlyhigher accuracyin delineating tumor 545 

volumes with higher complexity (either in terms of shape, heterogeneity, noise levels and/or 546 

contrast), associated with a norm value higher than 3, on both simulated and clinical 547 

datasets. On the other hand, for simpler objects of interest (norm value below 3), we found 548 

that SPEQTACLE provided similar (although slightly improved) accuracy as FLAB and 549 

FLICM.Given the improved accuracy obtained with respect to FLAB on a dataset with a large 550 

range of contrast and noise levels as well as heterogeneity and shape, we expected that the 551 

robustness of SPEQTACLE should be at least similar as the one of FLAB. We indeed 552 

confirmed through a robustness analysis that the proposed automatic norm estimation 553 

scheme does not lead to decreased robustness with respect to varying image properties 554 

associated with the use of different PET/CT scanner models, reconstruction algorithms, or 555 

acquisition and reconstruction settings. Indeed, the level of robustness exhibited by 556 

SPEQTACLE was found to be similar to the one of FLAB, which had already been 557 

demonstrated as substantially more robust than standard FCM8. FLICM however was found 558 

to be much less robust, with segmentation failures for some of the configurations in the 559 

dataset. Given the fact that FLICM performed reasonably well on the accuracy dataset, its 560 

failure on the robustness evaluationmight be due to the two parameters (the regularization 561 

parameter and the size of the surrounding kernel) that were set a priori in this study using 562 

recommended values that might not be appropriate for some of the PET images of the 563 

robustness dataset. The overall performance of FLICM might therefore be improved by 564 

optimizing these two parameters for each phantom acquisition, which is however out of the 565 

scope of the present work. 566 

From a clinical point of view, our method might be easier than most of the previously 567 

proposed onesto implement in a clinical setting because it is fully automatic and perfectly 568 

repeatable, with no user intervention for parameterization beyond the localization of the 569 
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tumor in the whole-body image and its isolation in a 3D ROI. It is also very fast due to its low 570 

computational cost; thesegmentation of thelargest tumor (55×55×25 voxels) requires less 571 

than 1 min on a standard computer (CPU E5520 2.27 GHz×8), which could be easily 572 

shortened through algorithmic optimization and parallel computing or GPU implementation. 573 

Moreover, the algorithm itselfuses a negligible amount of memory. 574 

The present work has a few limitations. It should be reminded that the proposed algorithm 575 

aims at the accurate delineation of a single pathological uptake previously detected and 576 

isolated in a ROI, similarly as FLAB. It was therefore not evaluated within the context of the 577 

simultaneous segmentation of multiple tumors (as each tumor should be processed 578 

independently when using SPEQTACLE), the detection of tumors and/or lymph nodes in a 579 

whole-body image45, nor the segmentation of diffuse and multifocal uptakes such as in 580 

pulmonary infection46. Also, we did not investigate the impact on the resulting segmentation 581 

of theinitial ROI selection, which is a first step as in most of published methods for PET tumor 582 

delineation10, 11. However, we already showed that this step has a very limited impact on the 583 

results for FLAB, as long as the ROI selection is made without incorporating nearby non-584 

relevant uptake that would bias the estimation process15. Given that SPEQTACLE 585 

demonstrated similar robustness as FLAB, the impact of this step should be similarly low. 586 

Second, we did not include a large number of methods to compare SPEQTACLE with. Given 587 

its previous validation and demonstrated performance, FLAB can be considered a state-of-588 

the-art method and our primary goal was to improve on that approach for challenging cases. 589 

A full comparison with numerous other methods was out of the scope of this work and might 590 

be conducted in the future using the benchmark currently being developed by the AAPM 591 

taskgroup 211147. Second, the robustness analysis was carried out on a smaller dataset than 592 

for the previously reported analysis for FLAB, FCM and thresholding methods8, however the 593 

dataset is certainly representative enough to provide a clear picture. Third, we did not 594 

evaluate the algorithms on clinical datasets with histopathology associated measurements. 595 

                                                           
1
http://aapm.org/org/structure/default.asp?committee_code=TG211 

http://aapm.org/org/structure/default.asp?committee_code=TG211
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The one dataset available to us consists of maximum diameter measurements only17, which 596 

might not be sufficient to highlight differences between the advanced algorithms under 597 

comparison. On the other hand, a benchmark developed by the AAPM Taskgroup 211 is 598 

expected to contain several clinical datasets with histopathological volumes47, and could be 599 

used for future comparison studies. Finally, in the present implementation, the norm 600 

parameter was estimated from an automatically pre-segmented estimation of the tumor 601 

region, using a background-subtraction approach 32 in order to obtain a first guess of the 602 

tumor class. The estimated norm was then used for all classes in the segmentation.In future 603 

work, it would therefore be possible topotentially improve the algorithm performanceby 604 

estimating a norm parameter for each class in the ROI. In this case, the minimized criterion 605 

in GFCM becomes: 606 
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
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The norm parameter i cannot be estimated by using the Newton-Raphson algorithm on the 608 

minimized criterion of equation (4). Indeed, the norm parameter is essentially dependent on 609 

the statistical behavior of the data and generally there is no solution 1i  which minimizes 610 

equation (4). Thus minimizing equation (4) according to i  is equivalent to solving: 611 
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Consequently, it depends on how data are scaled and the presence of uy  such that 613 

1 iuy   contributes to making this derivative > 0. Amongst other possible extensions, it 614 

will be interesting to estimate a variance parameter additionally to the center parameter i  615 

and the norm parameter. Such a method would be able to fit more completely the statistical 616 

distribution of the intensities. Indeed, i  controls the mean of intensities for each cluster, i  617 

controls the shape of the distribution whereas the variance parameter controls the disparity 618 
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of each cluster.Another future work will consist in extending SPEQTACLE to the multimodal 619 

situation for which each voxel becomes a vector whose components represent intensities 620 

taken from each image modality, for instance PET, CT and MRI. In the multimodal version, a 621 

norm parameter has to be estimated for each modality. The minimized criterion will thus have 622 

the same form by replacing the absolute value by a sum of absolute values. 623 

Conclusions 624 

In this paper, we have presented a fully automatic method for estimating the norm parameter 625 

in a generalized fuzzy C-meansframework. We have developed and validated this new 626 

methodfor PET tumor delineation, andnamed it SPEQTACLE for Spatial Positron Emission 627 

Quantification of Tumor:AutomatiCLp-norm Estimation. The proposed approach is fully 628 

automated and perfectly repeatable. It provides improved accuracy with respect to state-of-629 

the art methods for realistic challenging delineation cases. Thiswas demonstrated on both 630 

simulated and clinical datasets with complex shapes, high levels of uptake heterogeneity. 631 

The improvement in accuracy was achieved without sacrificing robustness vs. varying image 632 

properties in a multi-centric setting, which is crucial if the method is to be widely applicable in 633 

clinical practice. Future extensions of SPEQTACLE will include a multimodal version of the 634 

algorithm for PET/CT, PET/MRI and other multimodal medical imaging applications, as well 635 

as a multi-class norm estimation scheme to improve the algorithm performance. 636 

637 



34 
 

References 638 

1  S. Hess, B.A. Blomberg, H.J. Zhu, P.F. Høilund-Carlsen, and A. Alavi, “The Pivotal Role of FDG-639 
PET/CT in Modern Medicine,” Acad. Radiol. 21(2), 232–249 (2014). 640 

2  G.C. Pereira, M. Traughber, and R.F. Muzic, “The role of imaging in radiation therapy planning: 641 
past, present, and future,” BioMed Res. Int. 2014, 231090 (2014). 642 

3  K. Herrmann, M.R. Benz, B.J. Krause, K.L. Pomykala, A.K. Buck, and J. Czernin, “(18)F-FDG-PET/CT 643 
in evaluating response to therapy in solid tumors: where we are and where we can go,” Q J Nucl 644 
Med Mol Imaging 55(6), 620–32 (2011). 645 

4  T. Carlier and C. Bailly, “State-Of-The-Art and Recent Advances in Quantification for Therapeutic 646 
Follow-Up in Oncology Using PET,” Front. Med. 2, 18 (2015). 647 

5  M.K. Rahim, S.E. Kim, H. So, H.J. Kim, G.J. Cheon, E.S. Lee, K.W. Kang, and D.S. Lee, “Recent 648 
Trends in PET Image Interpretations Using Volumetric and Texture-based Quantification 649 
Methods in Nuclear Oncology,” Nucl. Med. Mol. Imaging 48(1), 1–15 (2014). 650 

6  J.P.B. O’Connor, C.J. Rose, J.C. Waterton, R.A.D. Carano, G.J.M. Parker, and A. Jackson, “Imaging 651 
Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome,” Clin. 652 
Cancer Res. Off. J. Am. Assoc. Cancer Res. 21(2), 249–257 (2015). 653 

7  S. Houshmand, A. Salavati, S. Hess, T.J. Werner, A. Alavi, and H. Zaidi, “An update on novel 654 
quantitative techniques in the context of evolving whole-body PET imaging,” PET Clin. 10(1), 45–655 
58 (2015). 656 

8  M. Hatt, C. Cheze Le Rest, N. Albarghach, O. Pradier, and D. Visvikis, “PET functional volume 657 
delineation: a robustness and repeatability study,” Eur J Nucl Med Mol Imaging 38(4), 663–72 658 
(2011). 659 

9  R. Boellaard, M.J. O’Doherty, W.A. Weber, F.M. Mottaghy, M.N. Lonsdale, S.G. Stroobants, W.J. 660 
Oyen, J. Kotzerke, O.S. Hoekstra, J. Pruim, P.K. Marsden, K. Tatsch, C.J. Hoekstra, E.P. Visser, B. 661 
Arends, F.J. Verzijlbergen, J.M. Zijlstra, E.F. Comans, A.A. Lammertsma, A.M. Paans, A.T. 662 
Willemsen, T. Beyer, A. Bockisch, C. Schaefer-Prokop, D. Delbeke, R.P. Baum, A. Chiti, and B.J. 663 
Krause, “FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0,” 664 
Eur J Nucl Med Mol Imaging 37(1), 181–200 (2010). 665 

10  M. Hatt, N. Boussion, C. Cheze-Le Rest, D. Visvikis, and O. Pradier, “*Metabolically active 666 
volumes automatic delineation methodologies in PET imaging: review and perspectives+,” Cancer 667 
Radiother 16(1), 70–81; quiz 82, 84 (2012). 668 

11  B. Foster, U. Bagci, A. Mansoor, Z. Xu, and D.J. Mollura, “A review on segmentation of positron 669 
emission tomography images,” Comput. Biol. Med. 50, 76–96 (2014). 670 

12  B. Braathen, W. Pieczynnski, and P. Masson, Global and local methods of unsupervised Bayesian 671 
segmentations of images, Mach. Graph. Vis. 39–52 (1993). 672 

13  D. Benboudjema and W. Pieczynski, “Unsupervised statistical segmentation of nonstationary 673 
images using triplet Markov fields,” IEEE Trans Pattern Anal Mach Intell 29(8), 1367–78 (2007). 674 

14  M. Hatt, F. Lamare, N. Boussion, A. Turzo, C. Collet, F. Salzenstein, C. Roux, P. Jarritt, K. Carson, 675 
C. Cheze-Le Rest, and D. Visvikis, “Fuzzy hidden Markov chains segmentation for volume 676 
determination and quantitation in PET,” Phys Med Biol 52(12), 3467–91 (2007). 677 

15  M. Hatt, C. Cheze le Rest, A. Turzo, C. Roux, and D. Visvikis, “A fuzzy locally adaptive Bayesian 678 
segmentation approach for volume determination in PET,” IEEE Trans Med Imaging 28(6), 881–679 
93 (2009). 680 

16  M. Hatt, C. Cheze le Rest, P. Descourt, A. Dekker, D. De Ruysscher, M. Oellers, P. Lambin, O. 681 
Pradier, and D. Visvikis, “Accurate automatic delineation of heterogeneous functional volumes in 682 
positron emission tomography for oncology applications,” Int J Radiat Oncol Biol Phys 77(1), 683 
301–8 (2010). 684 



35 
 

17  M. Hatt, C. Cheze-le Rest, A. van Baardwijk, P. Lambin, O. Pradier, and D. Visvikis, “Impact of 685 
tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer 686 
tumor delineation,” J Nucl Med 52(11), 1690–7 (2011). 687 

18  M. Hatt, C. Cheze-Le Rest, E.O. Aboagye, L.M. Kenny, L. Rosso, F.E. Turkheimer, N.M. 688 
Albarghach, J.P. Metges, O. Pradier, and D. Visvikis, “Reproducibility of 18F-FDG and 3’-deoxy-3’-689 
18F-fluorothymidine PET tumor volume measurements,” J Nucl Med 51(9), 1368–76 (2010). 690 

19  B.H. de Figueiredo, M. Antoine, R. Trouette, P. Lagarde, A. Petit, F. Lamare, M. Hatt, and P. 691 
Fernandez, “Use of FDG-PET to guide dose prescription heterogeneity in stereotactic body 692 
radiation therapy for lung cancers with volumetric modulated arc therapy: a feasibility study,” 693 
Radiat. Oncol. Lond. Engl. 9, 300 (2014). 694 

20  B. Henriques de Figueiredo, C. Zacharatou, S. Galland-Girodet, J. Benech, H. De Clermont-695 
Gallerande, F. Lamare, M. Hatt, L. Digue, E. De Mones Del Pujol, and P. Fernandez, “Hypoxia 696 
imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy 697 
in head-and-neck cancers,” Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al (2014). 698 

21  A.I.J. Arens, E.G.C. Troost, B.A.W. Hoeben, W. Grootjans, J.A. Lee, V. Grégoire, M. Hatt, D. 699 
Visvikis, J. Bussink, W.J.G. Oyen, J.H.A.M. Kaanders, and E.P. Visser, “Semiautomatic methods for 700 
segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and 701 
neck carcinomas and their relation to clinical outcome,” Eur. J. Nucl. Med. Mol. Imaging 41(5), 702 
915–924 (2014). 703 

22  M. Hatt, A.L. Maitre, D. Wallach, H. Fayad, and D. Visvikis, “Comparison of different methods of 704 
incorporating respiratory motion for lung cancer tumor volume delineation on PET images: a 705 
simulation study,” Phys Med Biol 57(22), 7409–30 (2012). 706 

23  A. Le Maitre, M. Hatt, O. Pradier, C. Cheze-le Rest, and D. Visvikis, “Impact of the accuracy of 707 
automatic tumour functional volume delineation on radiotherapy treatment planning,” Phys 708 
Med Biol 57(17), 5381–97 (2012). 709 

24  D.E. Gustafson and W.C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix,” in 1978 IEEE 710 
Conf. Decis. Control 17th Symp. Adapt. Process.(1978), pp. 761–766. 711 

25  R.J. Hathaway, J.C. Bezdek, and Y. Hu, “Generalized Fuzzy C-means Clustering Strategies Using Lp 712 
Norm Distances,” Trans Fuz Sys 8(5), 576–582 (2000). 713 

26  S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on 714 
new kernel-induced distance measure,” IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(4), 715 
1907–1916 (2004). 716 

27  M.-S. Yang and K.-L. Wu, “Unsupervised Possibilistic Clustering,” Pattern Recogn 39(1), 5–21 717 
(2006). 718 

28  M. Daniel, “Belief Functions: A Revision of Plausibility Conflict and Pignistic Conflict.,” in SUM, 719 
edited by W. Liu, V.S. Subrahmanian and J. Wijsen (Springer, 2013), pp. 190–203. 720 

29  M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, and T. Moriarty, “A modified fuzzy C-721 
means algorithm for bias field estimation and segmentation of MRI data,” IEEE Trans. Med. 722 
Imaging 21(3), 193–199 (2002). 723 

30  S. Krinidis and V. Chatzis, “A robust fuzzy local information C-Means clustering algorithm,” IEEE 724 
Trans. Image Process. Publ. IEEE Signal Process. Soc. 19(5), 1328–1337 (2010). 725 

31  I. Gath and A. Geva, “Unsupervised optimal fuzzy clustering,” IEEE Trans. Pattern Anal. Mach. 726 
Intell. 11(7), 773–780 (1989). 727 

32  I.A. Burger, H.A. Vargas, B.J. Beattie, D.A. Goldman, J. Zheng, S.M. Larson, J.L. Humm, and C.R. 728 
Schmidtlein, “How to assess background activity: introducing a histogram-based analysis as a 729 
first step for accurate one-step PET quantification,” Nucl. Med. Commun. 35(3), 316–324 (2014). 730 

33  S.-I. Amari and H. Nagaoka, Methods of Information Geometry (American Mathematical Society, 731 
2007). 732 

34  B. Berthon, C. Marshall, A. Edwards, M. Evans, and E. Spezi, “Influence of cold walls on PET 733 
image quantification and volume segmentation: a phantom study,” Med. Phys. 40(8), 082505 734 
(2013). 735 



36 
 

35  F. Hofheinz, S. Dittrich, C. Pötzsch, and J. van den Hoff, “Effects of cold sphere walls in PET 736 
phantom measurements on the volume reproducing threshold,” Phys. Med. Biol. 55(4), 1099–737 
1113 (2010). 738 

36  S.K. Warfield, K.H. Zou, and W.M. Wells, “Simultaneous truth and performance level estimation 739 
(STAPLE): an algorithm for the validation of image segmentation,” IEEE Trans Med Imaging 23(7), 740 
903–21 (2004). 741 

37  H. Zaidi, M. Abdoli, C.L. Fuentes, and I.M. El Naqa, “Comparative methods for PET image 742 
segmentation in pharyngolaryngeal squamous cell carcinoma,” Eur. J. Nucl. Med. Mol. Imaging 743 
39(5), 881–891 (2012). 744 

38  A. Le Maitre, W. Segars, S. Marache, A. Reilhac, M. Hatt, S. Tomei, C. Lartizien, and D. Visvikis, 745 
“Incorporating Patient-Specific Variability in the Simulation of Realistic Whole-Body 18F-FDG 746 
Distributions for Oncology Applications,” Proc. IEEE 9(12), 2026–2038 (2009). 747 

39  P. Papadimitroulas, G. Loudos, A. Le Maitre, M. Hatt, F. Tixier, N. Efthimiou, G.C. Nikiforidis, D. 748 
Visvikis, and G.C. Kagadis, “Investigation of realistic PET simulations incorporating tumor 749 
patient’s specificity using anthropomorphic models: creation of an oncology database,” Med. 750 
Phys. 40(11), 112506 (2013). 751 

40  W. Segars, Development and Application of the New Dynamic  NURBS-based Cardiac-Torso 752 
(NCAT) phantom (2001). 753 

41  F. Lamare, A. Turzo, Y. Bizais, C.C. Le Rest, and D. Visvikis, “Validation of a Monte Carlo 754 
simulation of the Philips Allegro/GEMINI PET systems using GATE,” Phys Med Biol 51(4), 943–62 755 
(2006). 756 

42  D. Visvikis, A. Turzo, A. Gouret, P. Damine, F. Lamare, Y. Bizais, and C. Cheze Le Rest, 757 
“Characterisation of SUV accuracy in FDG PET using 3-D RAMLA and the Philips Allegro PET 758 
scanner,” J. Nucl. Med. 45(5), 103 (2004). 759 

43  D.C. Weber, H. Wang, L. Cozzi, G. Dipasquale, H.G. Khan, O. Ratib, M. Rouzaud, H. Vees, H. Zaidi, 760 
and R. Miralbell, “RapidArc, intensity modulated photon and proton techniques for recurrent 761 
prostate cancer in previously irradiated patients: a treatment planning comparison study,” 762 
Radiat Oncol 4, 34 (2009). 763 

44  S. Belhassen and H. Zaidi, “A novel fuzzy C-means algorithm for unsupervised heterogeneous 764 
tumor quantification in PET,” Med Phys 37(3), 1309–24 (2010). 765 

45  L. Bi, J. Kim, L. Wen, and D.D. Feng, “Automated and robust PERCIST-based thresholding 766 
framework for whole body PET-CT studies,” Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 767 
IEEE Eng. Med. Biol. Soc. Conf. 2012, 5335–5338 (2012). 768 

46  B. Foster, U. Bagci,  null Ziyue Xu, B. Dey, B. Luna, W. Bishai, S. Jain, and D.J. Mollura, 769 
“Segmentation of PET images for computer-aided functional quantification of tuberculosis in 770 
small animal models,” IEEE Trans. Biomed. Eng. 61(3), 711–724 (2014). 771 

47  T. Shepherd, B. Berthon, P. Galavis, E. Spezi, A. Apte, J. Lee, D. Visvikis, M. Hatt, E. de Bernardi, S. 772 
Das, I. El Naqa, U. Nestle, C. Schmidtlein, H. Zaidi, and A. Kirov, “Design of a benchmark platform 773 
for evaluating PET-based contouring accuracy in oncology applications,” Eur. J. Nucl. Med. Mol. 774 
Imaging 39, S264–S264 (2012). 775 

  776 



37 
 

Appendices 777 

A. FCM minimization step 778 

The minimization process for FCM is achieved recursively until convergence: 779 
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B. Newton-Raphson algorithm 783 

Let f  be a derivable function from  to  , the Newton-Raphson algorithm is an algorithm to 784 

find the solution a such that  0)( af . The Newton-Raphson works as following: 785 

1. Set 0a an initial value; 786 
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C. GFCM minimization step (norm parameter is known) 788 

For fixed norm parameter   and weight parameters Ciiup 1, )( , the center j  is estimated by 789 

minimizing: 790 
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One can easily show that the Newton-Raphson algorithm does not converge when 2 . 794 

Consequently, the minimization step of GFCM with fixed norm parameter works as following: 795 

1. Let 
)0(

,iup  and 
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i   be initial values; 796 

2. If 2  compute 
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of this sequence. 800 

3. If 2 , compute 
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j  by Gradient descent algorithm: 801 
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D. Eulerian functions 806 

The Eulerian function is defined as an integral for any complex number which real part is 807 

strictly positive as: 808 
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For any strictly positive integer, we have )!1()(  nn  and for any complex z such that 810 
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We define the di-gamma function as 
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z  . The consecutive derivatives of   are given by the Laurent 817 

developments: 818 
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E. Fisher information matrix, Kullback information divergence and related results 820 

Let    :)(ypy  be a smooth manifold of statistical distribution parameterized 821 

by an open set k , the Fisher information matrix for the value   of the parameter is 822 

given by: 823 
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, 
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 YpEI
ji

ji , 824 

which is the negative of the mean of the Hessian of the log-likelihood. Under good conditions 825 

(reversibility of integration and derivation), this matrix is strictly positive and symmetric. 826 
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Each statistical distribution )( ypy   lies on an embedding set of infinite dimension; 827 

indeed to represent the entire graph of such a function, we need an infinite number of values 828 

for y . However, it is parameterized by a finite number of real numbers; consequently,   has 829 

an intrinsic dimension equal to the number k of real parameters. A Riemannian manifold is 830 

provided with an infinitesimal distance which, in our case, is given by the Fisher information 831 

matrix. Without giving all the details regarding the differential geometry, one can say 832 

colloquially that the distance between “close” distributions )( ypy   and )(  dypy   833 

is given by: 834 

 dIddl )()( * . Let 1 and 2 be two values of the parameter, the length of 835 

the curve )(],[ 21 tttt   where 
11)(  t and 

22 )(  t  in the space of distributions is 836 

given by: 837 


2

1

)('))(())('()( *

t

t

dtttItL  , 838 

where )(' tt  is the derivative of )(tt  along t . The distance between the distributions 839 

)( 1ypy  and )( 2ypy  is the length of the smallest curve )(tt  . 840 

The Kullback divergence between two probability densities p (target probability) and q  841 

(instrumental probability) is defined as: 842 
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
 .)(

)(

)(
log):( dyyp

yq

yp
qpK  The Kullback divergence is not a metric and 843 

):():( pqKqpK  . However, if p  and q  are in the same parametrical set, denoting 844 

):( 12 K  the Kullback divergence for )( 1pq  and )( 2pp  , the Kullback divergence 845 

satisfies the asymptotic equation: 846 
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)()()():(
2*   dIddK , 847 

when d  tends to 0. 848 


