Additional Clues for a Protective Role of Vitamin D in Neurodegenerative Diseases: 1,25-Dihydroxyvitamin D3 Triggers an Anti-Inflammatory Response in Brain Pericytes

Marie-France Nissou, Audrey Guttin, Cyril Zenga, François Berger, Jean-Paul Issartel, Didier Wion

To cite this version:
Additional Clues for a Protective Role of Vitamin D in Neurodegenerative Diseases: 1,25-Dihydroxyvitamin D3 Triggers an Anti-Inflammatory Response in Brain Pericytes

Marie-France Nissou a,b,d,1, Audrey Guttin b,c,e,1, Cyril Zenga a, François Berger a,b,c,d, Jean-Paul Issartel b,c,f,1 and Didier Wion a,b,c,∗

aINSERM U1167, CLINATEC, Centre de Recherche Edmond J Safra, MINATEC Campus CEA, Grenoble, France
bINSERM U836, Grenoble Institut des Neurosciences, Team Nanomedicine and Brain, Grenoble, France
cUniversity of Grenoble Alpes, Grenoble, France
dCHU de Grenoble and Institut de Biologie et Pathologie, Grenoble, France
eCaCyS, EHPE, CNRS, UJF, Grenoble, France
fCNRS, Grenoble, France

Abstract. Epidemiological and experimental studies suggest that 1,25-dihydroxyvitamin D3 (1,25D) plays a neuroprotective role in neurodegenerative diseases including Alzheimer’s disease. Most of the experimental data regarding the genes regulated by this hormone in brain cells have been obtained with neuron and glial cells. Pericytes play a critical role in brain function that encompasses their classical function in blood-brain barrier control and maintenance. However, the gene response of brain pericytes to 1,25D remains to be investigated. Analyses of the transcriptomic response of human brain pericytes to 1,25D demonstrate that human brain pericytes in culture respond to 1,25D by regulating genes involved in the control of neuroinflammation. In addition, pericytes respond to the pro-inflammatory cytokines tumor necrosis factor α and Interferon γ by inducing the expression of the CYP27B1 gene which is involved in 1,25D synthesis. Taken together, these results suggest that neuroinflammation could trigger the synthesis of 1,25D by brain pericytes, which in turn respond to the hormone by a global anti-inflammatory response. These findings identify brain pericytes as a novel 1,25D-responsive cell type and provide additional evidence for the potential value of vitamin D in the prevention or therapy of Alzheimer’s disease and other neurodegenerative/neuropsychiatric diseases associated with an inflammatory component.
INTRODUCTION
Recent data suggest a role for 1,25-dihydroxyvitamin D3 (1,25D) in the prevention or in the therapy of neurodegenerative and neuropsychiatric diseases including multiple sclerosis and Alzheimer’s disease (AD) (for recent reviews, see [1–10]). 1,25D is a secosteroid hormone produced from vitamin D through a two-step hydroxylation process successively producing 25-hydroxyvitamin D3 (25D) and vitamin D’s most active metabolite 1,25D. This last step is catalyzed by the 25-Hydroxyvitamin D3 1α-Hydroxylase named CYP27B1. Inactivation of 1,25D occurs through another hydroxylation step catalyzed by the vitamin D 24-Hydroxylase named CYP24A1, and generating 1,24,25-trihydroxyvitamin D3 [11, 12]. 1,25D regulates the transcription of its cell specific target genes by interacting with a protein named vitamin D receptor (VDR). The presence of VDR in brain [13–16], the capacity of 1,25D to regulate the expression of neurotrophic factors (for reviews, see [17]), and its anti-inflammatory potential [2, 18] are strong arguments in favor of a role for 1,25D in brain function. Regarding brain diseases, many recent studies report an association between vitamin D insufficiency and neurodegenerative/neuropsychiatric disorders [5,7, 10, 19, 20]. Experimental evidence also demonstrates preventive or therapeutic potential for 1,25D in brain disorders including multiple sclerosis, Parkinson’s disease, AD, and traumatic brain injury (for recent reviews, see [21–24]). Investigating the generic response to vitamin D in brain cells is critical for understanding the molecular basis of its neuroprotective effect. Most of the experimental data regarding the potential of 1,25D to regulate the expression of genes able to prevent or delay the progression of neurodegenerative diseases have been obtained in vitro using brain-derived cells. These include neurons and macrophage microglial cells (see [25–32]). However, little attention has been given to another abundant brain cell type, the brain pericyte. Pericytes are microvessel cells that wrap around endothelial cells [33–35]. The pericyte-to-endothelial ratio is 1:3, and the total length of capillaries in human brain is around 400 miles [36, 37]. The edge-to-edge inter-microvessels distance in rat brain is around 20 μm in grey matter and 30 μm in white matter [38]. This means that pericytes are very close to every neuronal cell. Because of their perivascular localization, pericytes are components of the neurovascular unit (NVU), an anatomical and functional entity associating neurons, glial and immune cells, endothelial cells, pericytes, and the extracellular matrix [33–35, 39, 40]. How brain pericytes communicate with glial and neuronal cells in NVU is still largely unknown, but they are, however, essential for proper functions of neurons [36, 41]. In addition to their role in angiogenesis, vessel maintenance, and blood-brain barrier formation and functions [33, 35], brain pericytes also contribute to immune and inflammatory responses by synthesizing pro-inflammatory cytokines including CXCL8/IL-8, CXCL11/ITAC, CCL5/Rantes, tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) [42]. They participate to the adaptive immune response [43] and also have an immunosuppressive function by decreasing T lymphocyte proliferation [44]. The importance of pericytes in brain function is assessed by the observation that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning impairment, memory deficiency, and the neuroinflammatory response [41]. Pericyte loss or dysfunction influences multiple steps of AD in several experimental models [36, 41, 45]. Hence, targeting brain pericytes is now considered as a novel therapeutic option for AD [39, 41, 45, 46]. The emerging evidence for a role of vitamin D in brain function and its potential preventive and therapeutic interest in the management of neurodegenerative disease prompted us to analyze the transcriptional response of human brain pericyte to 1,25D. Our results provide evidence for a functional relationship between vitamin D and pericytes in the control of inflammation that could explain some of the anti-inflammatory and neuroprotective effects of vitamin D.
MATERIAL AND METHODS

Cell culture

Human brain pericytes and human brain endothelial cells were obtained from ScienCell Research Laboratories (San Diego, CA, USA). Cells were cultured on poly-lysine coated culture dishes according to the provider instructions. Briefly, the growth medium for pericytes was made with Pericyte Basal Culture Medium supplemented with 2% fetal bovine serum, with Pericyte Cell Growth Supplement and with penicillin and streptomycin, all from ScienCell Research Laboratories (San Diego, CA, USA).

Brain endothelial cells were cultured in Endothelial Basal Culture Medium supplemented with Endothelial Growth Supplement and with penicillin and streptomycin, all from ScienCell Research Laboratories. In the absence of a definitive pan-marker for pericytes, immunophenotyping of pericytes relies on the use of a panel of different markers [34]. Positive markers can include PDGFRβ, nestin, and CD13/aminopeptidaseN, whereas Ve-Cad can be used as a negative marker. Immunophenotyping of our cell cultures demonstrated homogeneous positive labelling for PDGFRβ, nestin, CD13/aminopeptidase N and no detectable synthesis of the endothelial marker VE-Cadherin (Supplementary Fig. 1A-D). On the contrary, brain endothelial cells stained positively for the endothelial marker VE-Cadherin (Supplementary Fig. 1E). TNF-α and Interferon-γ (Peprotech, Neuilly-sur-Seine, France) were used at 50 ng/ml.

Western blot analysis

For western blot analysis, cell pellets were resuspended and lysed in RIPA buffer (Cell Signaling Technology, Danvers, USA) supplemented with complete Protease Inhibitor Cocktail (Cell Signaling Technology, Danvers, USA). The proteins (40 μg) were resolved with 8% polyacrylamide gel and transferred onto the Hybond N+ membrane (Amersham, Velizy-Villacoublay, France) according to standard protocols. Blots were then probed with the VDR antibody N20 (Santa Cruz, sc-1009) or D6 (Santa Cruz, sc-13133), followed by incubation with the corresponding horseradish peroxidase conjugated secondary antibodies (Santa Cruz, sc-2004 or sc-2005).

RNA extraction and RT-qPCR

2 μg of total RNA were transcribed into cDNA using iScriptTM Reverse Transcription Supermix for RT-qPCR (BioRad Laboratories, Marnes-la-Coquette, France). PCR primers (Eurogentec, Angers, France) for each gene were designed using the Universal ProbeLibrary Assay Design Center (https://www.roche-applied-science.com/sis/rtpcr/upl/ezhome.html) and sequences of the primers used are given as Supplementary Table 1. Then real-time PCRs were performed according to the SYBR Green methodology using the SsoAdvancedTM SYBR Green Supermix (BioRad Laboratories, Marnes-la-Coquette, France), on aCFX96 TouchTM Real-Time PCR Detection System (BioRad Laboratories, Marnes-la-Coquette, France). Reference genes are _actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), whose expressions were not affected by 1,25D according to our Affymetrix data (data not shown). Analyses were performed as previously described [25] with CFX ManagerTM software (BioRad Laboratories, Marnes-la-Coquette, France) using __Ct method. Each qPCR was performed in triplicate for PCR yield validation and all reactions were performed on three different biological samples. Data were quantified relative to gene expressions of pericyte cells without 1,25D treatment, which was standardized to 100. The statistical validation was given by the CFXManager software and p < 0.005 was considered significant.
Gene expression profiling

Total RNA (300 ng) extracted as described above was reverse transcribed and labelled with 3′ IVTExpress kit (Affymetrix, High Wycombe, UK) following the manufacturer’s instructions. Labelled samples were hybridized on GeneChip Human Genome U133 Plus 2.0 (Affymetrix, High Wycombe, UK). This microarray contains over 47,000 unique transcripts which correspond approximately to 39,000 human genes. Subsequent wash, stain, and scan were performed according to the standard Affymetrix protocols. Raw expression data were normalized using the Robust Multi-array Average method. Experiments were repeated twice using different RNA samples on GeneChip (Affymetrix, High Wycombe, UK) and corroborated by RT-qPCR for genes of interest. The transcriptomic data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through the Gene Expression Omnibus accession number GSE54765.

RESULTS

Pericytes express VDR and respond to 1,25D by inducing CYP24A1 expression

1,25D regulates gene expression of its target genes by interacting with the nuclear receptor VDR. We first investigated the presence of VDR in human brain pericyte. Western blot analysis of pericyte cell lysates with the VDR polyclonal antibody N20 detected the presence of a 53 kDa band consistent with the presence of VDR in these cells (Fig. 1A). A similar result was obtained with the VDR monoclonal antibody D6 (Supplementary Fig. 2). We next determined the functionality of the 1,25D/VDR transduction pathway in human brain pericytes by analyzing CYP24A1 regulation by 1,25D (CYP24A1 is a well-known 1,25D-responsive gene [47]). Results presented in Fig. 1B demonstrate the strong induction of CYP24A1 gene expression in pericytes treated for 24 hours with 10^{-8} M 1,25D.

Brain pericyte transcriptomic response to 1,25D

Having demonstrated the presence of VDR in human brain pericytes and the responsiveness of these cells to 1,25D, we analyzed the transcriptomic response of brain pericytes to 1,25D. RNA from pericytes cultured for 24 hours either with 10^{-8} M 1,25D or with vehicle only (ethanol) were extracted and processed for transcriptomic analyses. Experiments were performed on two different RNA preparations for each condition. Twenty genes were found upregulated by a factor of at least 1.7, and 5 down-regulated genes were also detected (expression ratios lower than 0.7) (Table 1). Eight of these genes were already described as 1,25D targets in cells other than pericytes. These genes are cytochrome P450A1 (CYP24A1) [47], elongation factor Tu GTP binding domain (EFTUD1) [48], thrombomodulin (THBD) [49], odd-skipped related 2 (OSR2) [50], Kruppel-like factor 4 (KLF4) [51], insulin-like growth factor binding protein 5 (IGFBP5) [52], fatty acid binding protein 4 (FABP4) [53], and tumor necrosis factor (ligand) superfamily member 4 (TNFS4/OX40L) [54]. An analysis of the 25 genes found regulated by 1,25D was carried out with the GeneDeck analysis tool (http://www.genecards.org/). This allowed the identification of 14 disorders associated with this set of genes with a p value lower than 10^{-5}. Six of these disorders were inflammatory diseases: endotheliitis ($p = 2.2 \times 10^{-10}$), asthma ($p = 1.4 \times 10^{-6}$), rheumatoid arthritis ($p = 2 \times 10^{-6}$), arthritis ($p = 5.1 \times 10^{-6}$), inflammation ($p = 6.4 \times 10^{-6}$), and pancreatitis ($p = 1.1 \times 10^{-5}$). The other disorders include various cancers and hypertension. To confirm the relationship existing between the transcriptomic response of brain pericytes to 1,25D and inflammation, a bibliographic search in PubMed associating each of these 25 genes with the keyword “inflammation” was done. Relevant results were obtained for 8 genes. These genes are vascular cell adhesion molecule 1 (VCAM1), THBD, KLF4, tumor necrosis factor alpha-induced protein 6 (TNFAIP6), chordin-like 1 (CHRDL1),...
chemokine (C-C motif) ligand 2 (CCL2), FABP4, tumor necrosis factor (ligand) superfAMILY member 4 (TNFSF4). THBD, KLF4, FABP4, and TNFSF4 have already been described as 1,25D-responsive genes in cells other than brain cells or pericytes [49, 51, 53, 54]. Confirmatory RT-qPCR analyses were performed that validated the transcriptomic data for the 4 remaining genes which were not previously described as 1,25D targets (Fig. 2). These are CCL2, CHDRL1, TNFPAIP6, and VCAM-1. KLF4 and TNFSF4 were also included as positive controls in these confirmatory experiments. Importantly the regulations observed are consistent with a global anti-inflammatory response (see discussion below).

Induction of CYP27B1 expression by the pro-inflammatory cytokines TNF-α and Interferon-γ

25D is the most abundant metabolite of vitamin D in the circulation, but the most active metabolite is 1,25D [11, 12]. Hydroxylation of 25D to active 1,25D is required for the induction of the 1,25D-dependent signaling pathway [11, 12]. This reaction is carried out by 25-Hydroxyvitamin D3 1alpha-Hydroxylase CYP27B1, the rate limiting enzyme in 1,25D synthesis. Analysis of our transcriptomic data for CYP27B1 failed to detect any expression for this gene in our pericyte cultures (data not shown). Considering the global anti-inflammatory gene response of pericytes to 1,25D, we hypothesized that inflammatory stimuli could upregulate CYP27B1 gene expression in these cells. This would allow pericytes to metabolize 25D into 1,25D and then limit the inflammatory response locally. To investigate this point we treated brain pericytes with TNF-α and Interferon-γ which were recently found to upregulate CYP27B1 in astrocytes [55]. Figure 3 showed that a treatment of pericytes for 24 hours with these two inflammatory cytokines stimulated the expression of CYP27B1.

DISCUSSION

Epidemiological studies reveal a relationship between several neurodegenerative/psychiatric diseases and low vitamin D levels [5, 7, 10, 19–21, 57, 58]. Although association does not mean causation, the possible role of vitamin D as a protective co-factor against brain disorders is further supported by data demonstrating the neuroprotective effect of vitamin D or its active metabolite 1,25D in several experimental models of brain diseases (for recent reviews, see [1–10]). Understanding the molecular pathways involved in these effects is critical for optimizing clinical trials. At the transcriptomic level, 1,25D is already known to upregulate several genes relevant to neuroprotection in brain cells. Several of these genes encode neurotrophins including NGF and GDNF [59–61]. 1,25D is a potent immunoregulatory agent [2–4, 62, 63]. In neurons or glial cells, 1,25D regulates the expression of genes involved in the control of neuroinflammation, such as cystathionine-beta-synthase, which codes for the enzyme producing the neuroprotective agent hydrogen sulfide [25], and gamma-glutamyltransferase (gamma-GT) which is the enzyme that synthesizes the antioxidant glutathione [64]. 1,25D also reduces the expression of the inflammatory cytokines M-CSF and TNF-α in astrocytes challenged with lipopolysaccharides [65], and protects brain cells from nitric oxide excessive production by down-regulating iNOS [30]. However, all these data have been obtained with cells other than pericytes, and the global gene response of pericytes to 1,25D remained to be investigated. This point is critical regarding the importance of pericytes in brain function [33–46]. The present study reveals that eight out of the twenty-five genes we found regulated by 1,25D in brain pericytes are related to inflammation. With exception of VCAM1, all of these genes are involved in critical anti-inflammatory processes. This regulation is consistent with a global anti-inflammatory process since pro-inflammatory genes are found down-regulated, while anti-inflammatory genes are upregulated.
Pro-inflammatory genes down-regulated by 1,25D in pericytes

CCL2/MCP-1 is an inflammatory chemokine that is also able to modulate blood-brain barrier permeability. It is upregulated in AD patients and notably in brain microvessels [66]. High plasma concentration of CCL2 are found in mild AD [67] and is associated with a faster rate of cognitive decline during the early stages of AD [68]. CCL2 is also associated with multiple sclerosis patients and experimental autoimmune encephalomyelitis (EAE). Moreover, deficiency in the CCL2 receptor CCR2 confers resistance to EAE [69]. TNFSF4/OX40L is the ligand of the OX40 receptor. The OX40-OX40L interaction is critical for the regulation of T cell tolerance and T-cell mediated inflammatory diseases [70]. Consequently, OX40 signaling is involved in allergic inflammation [71, 72] and in multiple sclerosis, and is also involved in the development of EAE [73]. Down-regulation of TNFSF4/OX40L is suggested to provide a novel approach for treating inflammatory disease [72, 74–76]. The fatty acid binding protein FABP4 acts at the interface of metabolic and inflammatory pathways [77]. It is involved in the development of a chronic inflammatory state recently referred to as metaflammation that connects obesity with inflammation [77]. FABP4 is associated with inflammatory factors related to obesity [78], and is also implicated in asthma [79] and rheumatoid arthritis [80]. To our knowledge, the involvement of FABP4 and the potential of inhibitors of FABP4 have not yet been investigated in inflammatory neurodegenerative disorders.

Anti-inflammatory genes upregulated by 1,25D in pericytes

Thrombomodulin (THBD) is a well characterized 1,25D responsive gene proposed as a biomarker for evaluating the effect of vitamin D supplementation [49]. The anti-inflammatory properties of thrombomodulin have been recently reviewed [81, 82]. THBD sequesters thrombin which has pro-inflammatory activities, in addition to its role in hemostasis and thrombosis. Note that thrombin is highly expressed in AD brain vessels and is a mediator of cerebral inflammation in AD. Thrombomodulin also promotes the activation of protein C, which, in addition to its anticoagulant activity, also has anti-inflammatory effects by suppressing the production of the pro-inflammatory cytokine TNF-α [83]. Tumor necrosis factor, alpha-induced protein 6 (TNFAIP6/TSG6) is a secreted protein whose expression is upregulated in response to pro-inflammatory cytokines such as TNF and IL-1. It has anti-inflammatory effects and acts as a negative feedback modulator by down-regulating the inflammatory response [84]. The identification of KLF4 as a 1,25D upregulated gene is in agreement with a previous finding obtained with keratinocytes [51] and is in line with a general role of 1,25D and KLF4 in the control of inflammatory responses. KLF4 inhibits endothelial inflammation [85] and represses the expression of histidine carboxylase, which is the enzyme that converts histidine to histamine, a major actor of allergy and inflammation [86]. In macrophage, KLF4 promotes the anti-inflammatory macrophage/microglia M2 phenotype at the expense of the M1 pro-inflammatory phenotype [87]. In this regard, it is worth mentioning that M2 microglia is reported to drive oligodendrocyte differentiation during CNS remyelination. Although such effects are observed with macrophages, they may be relevant in the case of pericytes. Indeed these cells are a source of macrophage activity, macrophage markers, phagocytosis, and antigen presentation [88]. Note, however, that KLF4 also increases the synthesis of several pro-inflammatory cytokines in M1 microglial cells [89]. This suggests that the effects of 1,25D on KLF4 expression could participate in the control of a balanced inflammatory response, thus preventing the development of chronic inflammation. Chordin-like protein 1 (CHRDL1), also known as Ventroptin, is a bone morphogenetic protein-4 antagonist [90, 91]. It antagonizes the function of BMP4 by binding to it and preventing its interaction with receptors. Increased expression of BMP4 mRNA within the hippocampus dentate
gyrus is correlated with a decrease in cell proliferation in A_PPswe/PS1DeltaE9 transgenic mice [92]. BMP4 is upregulated during EAE [93], and this cytokine is also reported to mediate inflammation in endothelial cells [94]. Hence, the synthesis of CHRD1 by pericytes would protect cells from inflammation. Vascular adhesion molecule-1 (VCAM1) is a cell-surface protein with adhesion properties. It is a lymphocyte adhesion molecule induced on human endothelium by inflammatory stimuli [95] and has been initially considered as an inflammatory marker. However, it is not clear whether its function is only directed toward the aggravation of the original insult or, depending on the context, is also involved in the restoration of homeostasis. VCAM1 plays a key role in the brain in maintaining subventricular zone adult stem cell niche structure and function [96]. This suggests that VCAM1 could have similar functions in the maintenance of the structure and functions of the NVU by regulating cell-cell junctions. Upregulation of VCAM1 has been suggested to playa protective role in maintaining the integrity of the ependymal zone during neuroinflammation [96]. VCAM-1 depletion leads to the rapid decrease of the subventricular zone neural stem cell population, suggesting that chronic VCAM-1 insufficiency/deficiency would lead to neural stem cell depletion [96]. Collectively, our gene expression data provide strong evidence that the gene response of human brain pericytes to 1,25D is directed toward the control of neuroinflammation.

Expression of CYP27B1 in pericytes can be induced by an inflammatory stimulus

1,25D results from the metabolism of 25D by 25-Hydroxyvitamin D3 1 alpha-Hydroxylase (CYP27B1). Thus, the availability of 1,25D at the cellular level depends on both circulating levels of 25D, and CYP27B1 expression level. 25D is detected in human cerebrospinal fluid [58]. Therefore, the characterization of stimuli able to induce CYP27B1 is critical. Here we report that TNF-α and Interferon-γ, two inflammatory cytokines recently described to regulate CYP27B1 expression in astrocytes and microglial cells [55], also induce the expression of CYP27B1 in pericytes. Note that pericytes are reported to secrete TNF-α [42]. Our data strongly suggest the existence of a regulatory intracrine/autocrine feedback loop in pericytes balancing the inflammatory potential of TNF-α and Interferon-γ. A paracrine role for the 1,25D produced by pericytes in the NVU during inflammation can also be considered. In conclusion, our results point to brain pericytes and 1,25D as two active players in the regulation of neuroinflammation. They provide additional evidence for a role of vitamin D metabolites in the prevention and the therapy of neurodegenerative/neuropsychiatric diseases through the modulation of neuroinflammation. They also strengthened the interest of targeting brain pericytes for controlling brain disorders such as AD [41, 45, 46, 97, 98].

ACKNOWLEDGMENTS

We thank Dr. A. Hihi for his critical reading of the manuscript.
Authors’ disclosures available online (http://www.jalz.com/disclosures/view.php?id=2286).

SUPPLEMENTARY MATERIAL

Supplementary material is available in the electronic version of this article: http://dx.doi.org/10.3233/JAD-140411.

REFERENCES

[22] Eyles DW, Burne THJ, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. *Front Neuroendocrinol* **34**, 47-64.

Fig. 1. Human pericyte cells express VDR and respond to 1,25D3. A) Immunoblot showing the presence of VDR in human pericyte brain cell cultures. Lane 1, molecular weight markers; lane 2: pericyte cell lysate. The blot was incubated with the VDR antibody N20. B) RT-qPCR assay of the mRNA of the 1,25D inducible gene vitamin D 24-Hydroxylase (CYP24A1) demonstrates a significant increase in CYP24A1 mRNA amount when pericytes are cultured for 24 hours with 10⁻⁸ M 1,25D3. (*p < 0.005); A.U: arbitrary units.
Table 1: List of differentially expressed genes in human brain pericyte cultures in the presence of \(10^{-8}\) M 1,25D (average induction fold \(\geq 1.7\) or \(\leq 0.7\) compared to control cells). Fold changes are the average of two independent experiments. Published references for genes previously reported to be modulated by 1,25D are indicated.

<table>
<thead>
<tr>
<th>Probe set ID</th>
<th>Gene Name</th>
<th>Exp 1</th>
<th>Exp 2</th>
<th>Average</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>206504_at</td>
<td>cytochrome P450, family 24, subfamily A,</td>
<td>158.2</td>
<td>355.8</td>
<td>237.2</td>
<td></td>
</tr>
<tr>
<td>203868_s_at</td>
<td>vascular cell adhesion molecule 1</td>
<td>3.4</td>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>218973_at</td>
<td>elongation factor Tu GTP binding domain</td>
<td>3.0</td>
<td>3.6</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>203887_s_at</td>
<td>thrombomodulin</td>
<td>2.8</td>
<td>2.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>213568_at</td>
<td>odd-skipped related 2 (Drosophila)</td>
<td>2.0</td>
<td>3.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>221841_s_at</td>
<td>Kruppel-like factor 4 (gut)</td>
<td>2.3</td>
<td>3.5</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>224762_s_at</td>
<td>serine incorporator 2</td>
<td>2.2</td>
<td>3.4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>205025_s_at</td>
<td>tumor necrosis factor, alpha-induced protein</td>
<td>2.4</td>
<td>2.8</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>210002_at</td>
<td>GATA binding protein 6</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>206765_at</td>
<td>potassium inwardly-rectifying channel, s</td>
<td>2.1</td>
<td>2.6</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>235532_at</td>
<td>Cdk5 and Abl enzyme substrate 1</td>
<td>1.5</td>
<td>2.0</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>204345_at</td>
<td>collagen, type XVII, alpha 1</td>
<td>2.1</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>225581_at</td>
<td>extracellular leucine-rich repeat and FLI</td>
<td>1.8</td>
<td>2.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>209763_at</td>
<td>chordin-like 1</td>
<td>1.7</td>
<td>1.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>219075_at</td>
<td>CD248 molecule, endoglin</td>
<td>1.7</td>
<td>1.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>212190_at</td>
<td>serpin peptidase inhibitor, clade E</td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>211958_at</td>
<td>insulin-like growth factor binding protein</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>221872_at</td>
<td>retinoic acid receptor responder (tazaro)</td>
<td>2.0</td>
<td>1.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>209840_s_at</td>
<td>leucine rich repeat neuronal 3</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>200878_at</td>
<td>endothelial PAS domain protein 1</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>216998_s_at</td>
<td>chemokine (C-C motif) ligand 2</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>203980_at</td>
<td>fatty acid binding protein 4, adipocyte</td>
<td>0.6</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>207426_s_at</td>
<td>tumor necrosis factor (ligand) superfamily</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>222862_s_at</td>
<td>adenylyl kinase 5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>239909_at</td>
<td>ADAMTS-like 1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2. Confirmatory RT-qPCR of the transcriptomic data for the genes newly identified as upregulated by 1,25D and involved in the regulation of inflammation. Results are depicted relative to control and normalized to actin and GAPDH mRNA. (*p < 0.005 compared to control). KLF4 and TNFSF4, two genes previously described as induced by 1,25D [51, 54], were included as positive control. CCL2, Chemokine (C-C motif) ligand 2; CHRDL1, Chordin-like 1; KLF4, Kruppel-like factor 4; TNFAIP6, Tumor necrosis Factor, alpha-induced protein 6; TNFSF4, Tumor necrosis factor (ligand) superfamily member 4; VCAM, Vascular cell adhesion molecule 1.
Fig. 3. TNF-α and Interferon-γ induce the expression of 25-Hydroxyvitamin D3 1alpha-Hydroxylase (CYP27B1) in human brain pericytes. Human brain pericytes were cultured in the presence or absence of TNF-α (50 ng/ml) and Interferon-γ (50 ng/ml) for 24 hours. Then RNA were extracted and CYP27B1 expression quantified by RT-qPCR. (*p < 0.005 compared to control).