Investigating the relationship between vitamin D and cancer requires dosing the bio-available non-hydroxylated vitamin D storage in cancer tissues
Matthieu Dreyfus, Didier Wion

To cite this version:

HAL Id: inserm-01194476
http://www.hal.inserm.fr/inserm-01194476
Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Investigating the relationship between vitamin D and cancer requires dosing the bio-available non-hydroxylated vitamin D storage in cancer tissues.

Matthieu Dreyfus, Didier Wion.

INSERM UA 01, Clinatec, Centre de recherche biomédicale Edmond J. Safra, CEA 17 rue des Martyrs, 38054 Grenoble cedex, France

In a recent article published in Cancer Shui et al. observed no statistically significant relationship between circulating 25-hydroxyvitamin D (25(OH)D) and fatal prostate cancer (PCa). However, an association between CYP2R1 SNPs and fatal PCa is found. CYP2R1 is the hydroxylase involved in the conversion of vitamin D into 25(OH)D. In the classical vitamin D endocrine system, activation of vitamin D into 1,25(OH)2D requires two successive hydroxylation steps. The first one is catalyzed by CYP2R1 in the liver and the second one by CYP27B1 in the kidneys. Then, 1,25D is released in the blood circulation and behaves as an endocrine hormone. The conversion of 25(OH)D into the active hormone 1,25(OH)2D by CYP27B1 is under stringent control. However, the first hydroxylation step catalyzed in the liver by CYP2R1 is constitutive and is not believed to be subjected to tight regulation. This has two important consequences: i) the regulation of liver CYP2R1 has retained little attention, and ii) circulating non-hydroxylated vitamin D is rapidly metabolized by liver CYP2R1. Therefore, 25(OH)D concentrations are considered to reflect vitamin D inputs and are used to determine the vitamin D status.

A major breakthrough in our understanding on the nonskeletal effects of vitamin D is the recent discovery of autocrine/paracrine vitamin D systems in many tissues. This autocrine/paracrine signaling ensures the local bioactivation of 25(OH)D into 1,25(OH)2D by extra-renal CYP27B1. In autocrine/paracrine vitamin D systems, the vitamin D metabolites are produced, act and are degraded locally without affecting serum 25(OH)D levels. Shui and coll. rightly pointed out that local synthesis of 1,25(OH)2D from 25(OH)D can occur, because CYP27B1 is expressed in the prostate. However, the authors do not mention that CYP2R1 is also expressed in prostate tissue. The fact that prostate can also perform the conversion of vitamin D into 25(OH)D is critical. Activity of prostate CYP2R1 depends on the local bio-availability of its substrate, namely non-hydroxylated vitamin D. There is very little circulating non-hydroxylated vitamin D in the body, but storage can occur. This requires large inputs and is mainly observed in fat tissues when circulating 25(OH)D concentrations exceed 90 nmol/L. This value is higher than the defined physiological levels for 25(OH)D sufficiency (50 nmol/L - 75 nmol/L) but is consistent with 25(OH)D concentrations suggested to reduce cancer risk (~150 nmol/L). The existence of a functional vitamin D autocrine/paracrine system in prostate that depends on the local bio-availability of non-hydroxylated vitamin D explains the findings reported by Shui et al. that are: i) the lack of significant association between circulating 25(OH)D and fatal Pca, and ii) the association between CYP2R1 SNPs and fatal Pca. CYP2R1 and CYP27B1 expression are regulated by inflammatory stimuli. In the prostate cancer inflammatory microenvironment, locally bioavailable non-hydroxylated vitamin D would be metabolized first by prostate CYP2R1 to generate 25(OH)D and then by CYP27B1 to produce 1,25(OH)D. This prostate autocrine/paracrine vitamin D system is disconnected to the physiological circulating levels of 25(OH)D (50-75 nmol/L) but will depend on local stores of non-hydroxylated vitamin D and of CYP2R1
activity. The co-existence of two vitamin D systems (endocrine and autocrine/paracrine) with different aims and characteristics, including optimal vitamin D requirements, enlightens the complexity of the vitamin D functions. The association between CYP2R1 SNPs and fatal PCa described by Shui et al points to the importance to include analyses on the bioavailability of non-hydroxylated vitamin D in studies investigating relationships between vitamin D and cancer.

References:


