C. Schofield and P. Ratcliffe, Oxygen sensing by HIF hydroxylases, Nature Reviews Molecular Cell Biology, vol.5, issue.5, pp.343-354, 2004.
DOI : 10.1038/nrm1366

G. Semenza, HIF-1: upstream and downstream of cancer metabolism, Current Opinion in Genetics & Development, vol.20, issue.1, pp.51-56, 2010.
DOI : 10.1016/j.gde.2009.10.009

J. Kim, I. Tchernyshyov, G. Semenza, and C. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia, Cell Metabolism, vol.3, issue.3, pp.177-185, 2006.
DOI : 10.1016/j.cmet.2006.02.002

V. Fantin, J. St-pierre, and P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance, Cancer Cell, vol.9, issue.6, pp.425-434, 2006.
DOI : 10.1016/j.ccr.2006.04.023

H. Pelicano, D. Martin, R. Xu, and P. Huang, Glycolysis inhibition for anticancer treatment, Oncogene, vol.129, issue.34, pp.4633-4646, 2006.
DOI : 10.1016/j.bbrc.2003.11.136

A. Le, C. Cooper, A. Gouw, R. Dinavahi, A. Maitra et al., Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression, Proceedings of the National Academy of Sciences, vol.107, issue.5, pp.2037-2042, 2010.
DOI : 10.1073/pnas.0914433107

P. Porporato, S. Dhup, R. Dadhich, T. Copetti, and P. Sonveaux, Anticancer Targets in the Glycolytic Metabolism of Tumors: A Comprehensive Review, Frontiers in Pharmacology, vol.2, p.49, 2011.
DOI : 10.3389/fphar.2011.00049

L. Floch, R. Chiche, J. Marchiq, I. Naiken, T. Ilc et al., CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors, Proceedings of the National Academy of Sciences, vol.108, issue.40, pp.16663-16668, 2011.
DOI : 10.1073/pnas.1106123108

URL : https://hal.archives-ouvertes.fr/hal-00756626

S. Parks, J. Chiche, and J. Pouyssegur, Disrupting proton dynamics and energy metabolism for cancer therapy, Nature Reviews Cancer, vol.3, issue.9, pp.611-623, 2013.
DOI : 10.1038/nrc3579

R. Poole and A. Halestrap, Transport of lactate and other monocarboxylates across mammalian plasma membranes

A. Halestrap, The SLC16 gene family ??? Structure, role and regulation in health and disease, Molecular Aspects of Medicine, vol.34, issue.2-3, pp.337-349, 2013.
DOI : 10.1016/j.mam.2012.05.003

A. Halestrap and M. Wilson, The monocarboxylate transporter family-Role and regulation, IUBMB Life, vol.81, issue.2, pp.109-119, 2012.
DOI : 10.1002/iub.572

M. Ullah, A. Davies, and A. Halestrap, The Plasma Membrane Lactate Transporter MCT4, but Not MCT1, Is Up-regulated by Hypoxia through a HIF-1??-dependent Mechanism, Journal of Biological Chemistry, vol.281, issue.14, pp.9030-9037, 2006.
DOI : 10.1074/jbc.M511397200

K. Dimmer, B. Friedrich, F. Lang, J. Deitmer, and S. Broer, The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells, Biochemical Journal, vol.350, issue.1, pp.219-227, 2000.
DOI : 10.1042/bj3500219

C. Pinheiro, A. Longatto-filho, J. Azevedo-silva, M. Casal, F. Schmitt et al., Role of monocarboxylate transporters in human cancers: state of the art, Journal of Bioenergetics and Biomembranes, vol.93, issue.Pt 3, pp.127-139, 2012.
DOI : 10.1007/s10863-012-9428-1

J. Doyen, C. Trastour, F. Ettore, I. Peyrottes, N. Toussant et al., Expression of the hypoxia-inducible monocarboxylate transporter MCT4 is increased in triple negative breast cancer and correlates independently with clinical outcome. Biochemical and biophysical research communications, pp.54-61, 2014.

J. Doherty, C. Yang, K. Scott, M. Cameron, M. Fallahi et al., Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis, Cancer Research, vol.74, issue.3, pp.908-920, 2013.
DOI : 10.1158/0008-5472.CAN-13-2034

S. Granja, I. Marchiq, L. Floch, R. , S. Moura et al., Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status, Oncotarget, vol.6, issue.9, 2014.
DOI : 10.18632/oncotarget.2862

M. Pollak, Targeting Oxidative Phosphorylation: Why, When, and How, Cancer Cell, vol.23, issue.3, pp.263-264, 2013.
DOI : 10.1016/j.ccr.2013.02.015

URL : http://doi.org/10.1016/j.ccr.2013.02.015

D. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nature Reviews Molecular Cell Biology, vol.367, issue.10, pp.774-785, 2007.
DOI : 10.1038/nrm2249

I. Salt, J. Celler, S. Hawley, A. Prescott, A. Woods et al., AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the ??2 isoform, Biochemical Journal, vol.334, issue.1, pp.334177-187, 1998.
DOI : 10.1042/bj3340177

J. Corton, J. Gillespie, and D. Hardie, Role of the AMP-activated protein kinase in the cellular stress response, Current Biology, vol.4, issue.4, pp.315-324, 1994.
DOI : 10.1016/S0960-9822(00)00070-1

C. Hutber, D. Hardie, and W. Winder, Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase, Am J Physiol, vol.272, pp.262-266, 1997.

D. Vavvas, A. Apazidis, A. Saha, J. Gamble, A. Patel et al., Contraction-induced Changes in Acetyl-CoA Carboxylase and 5'-AMP-activated Kinase in Skeletal Muscle, Journal of Biological Chemistry, vol.272, issue.20, pp.13255-13261, 1997.
DOI : 10.1074/jbc.272.20.13255

E. Kurth-kraczek, M. Hirshman, L. Goodyear, and W. Winder, 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes, vol.48, issue.8, pp.1667-1671, 1999.
DOI : 10.2337/diabetes.48.8.1667

A. Marsin, L. Bertrand, M. Rider, J. Deprez, C. Beauloye et al., Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Current Biology, vol.10, issue.20, pp.1247-1255, 2000.
DOI : 10.1016/S0960-9822(00)00742-9

H. Zong, J. Ren, L. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15983-15987, 2002.
DOI : 10.1073/pnas.252625599

D. Egan, D. Shackelford, M. Mihaylova, S. Gelino, R. Kohnz et al., Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy, Science, vol.331, issue.6016, pp.456-461, 2011.
DOI : 10.1126/science.1196371

A. Halestrap and N. Price, The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation, Biochemical Journal, vol.343, issue.2, pp.281-299, 1999.
DOI : 10.1042/bj3430281

S. Horman, G. Browne, U. Krause, J. Patel, D. Vertommen et al., Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis, Current Biology, vol.12, issue.16, pp.1419-1423, 2002.
DOI : 10.1016/S0960-9822(02)01077-1

K. Inoki, T. Zhu, and K. Guan, TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival, Cell, vol.115, issue.5, pp.577-590, 2003.
DOI : 10.1016/S0092-8674(03)00929-2

URL : http://doi.org/10.1016/s0092-8674(03)00929-2

D. Gwinn, D. Shackelford, D. Egan, M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Molecular Cell, vol.30, issue.2, pp.214-226, 2008.
DOI : 10.1016/j.molcel.2008.03.003

D. Carling and D. Hardie, The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1012, issue.1, pp.81-86, 1989.
DOI : 10.1016/0167-4889(89)90014-1

S. Davies, A. Sim, and D. Hardie, Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase, European Journal of Biochemistry, vol.171, issue.1, pp.183-190, 1990.
DOI : 10.1016/0014-5793(88)81251-1

K. Laderoute, K. Amin, J. Calaoagan, M. Knapp, T. Le et al., 5'-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments, Molecular and Cellular Biology, vol.26, issue.14, pp.5336-5347, 2006.
DOI : 10.1128/MCB.00166-06

J. Chiche, K. Ilc, J. Laferriere, E. Trottier, F. Dayan et al., Hypoxiainducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer research, pp.358-368, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00358780

S. Parks, N. Mazure, L. Counillon, and J. Pouyssegur, Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels, Journal of Cellular Physiology, vol.72, issue.9, pp.1854-1862, 2013.
DOI : 10.1002/jcp.24346

R. Polanski, C. Hodgkinson, A. Fusi, D. Nonaka, L. Priest et al., Activity of the Monocarboxylate Transporter 1 Inhibitor AZD3965 in Small Cell Lung Cancer, Clinical Cancer Research, vol.20, issue.4, pp.926-937, 2014.
DOI : 10.1158/1078-0432.CCR-13-2270

D. Buckwitz, G. Jacobasch, C. Gerth, H. Holzhutter, and R. Thamm, A kinetic model of phosphofructokinase from Plasmodium berhei. Influence of ATP and fructose-6-phosphate, Molecular and Biochemical Parasitology, vol.27, issue.2-3, pp.225-232, 1988.
DOI : 10.1016/0166-6851(88)90041-2

L. Spriet, Phosphofructokinase activity and acidosis during short-term tetanic contractions, Canadian Journal of Physiology and Pharmacology, vol.69, issue.2, pp.298-304, 1991.
DOI : 10.1139/y91-046

R. Wohlhueter and P. Plagemann, Hexose transport and phosphorylation by Novikoff rat hepatoma cells as function of extracellular pH, J Biol Chem, vol.256, pp.869-875, 1981.

A. Balgi, G. Diering, E. Donohue, K. Lam, B. Fonseca et al., Regulation of mTORC1 Signaling by pH, PLoS ONE, vol.493, issue.Pt 2, p.21549, 2011.
DOI : 10.1371/journal.pone.0021549.s001

J. Pouyssegur, J. Chambard, A. Franchi, S. Paris, V. Obberghen-schilling et al., Growth factor activation of an amiloride-sensitive Na+/H+ exchange system in quiescent fibroblasts: coupling to ribosomal protein S6 phosphorylation., Proceedings of the National Academy of Sciences, vol.79, issue.13, pp.3935-3939, 1982.
DOI : 10.1073/pnas.79.13.3935

B. Demeulder, E. Zarrinpashneh, A. Ginion, B. Viollet, L. Hue et al., Differential regulation of eEF2 and p70S6K by AMPKalpha2 in heart, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.6, pp.780-790, 2013.
DOI : 10.1016/j.bbadis.2013.02.015

X. Ma and J. Blenis, Molecular mechanisms of mTOR-mediated translational control, Nature Reviews Molecular Cell Biology, vol.27, issue.5, pp.307-318, 2009.
DOI : 10.1038/nrm2672

A. Kalender, A. Selvaraj, S. Kim, P. Gulati, S. Brule et al., Metformin, Independent of AMPK, Inhibits mTORC1 in a Rag GTPase-Dependent Manner, Cell Metabolism, vol.11, issue.5, pp.390-401, 2010.
DOI : 10.1016/j.cmet.2010.03.014

M. Zheng, Y. Wang, X. Wu, S. Wu, B. Lu et al., Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1, Nature Cell Biology, vol.25, issue.3, pp.263-272, 2011.
DOI : 10.1038/ncb2168

S. Tudzarova, S. Colombo, K. Stoeber, S. Carcamo, G. Williams et al., Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-??-TrCP, sequentially regulate glycolysis during the cell cycle, Proceedings of the National Academy of Sciences, vol.108, issue.13, pp.5278-5283, 2011.
DOI : 10.1073/pnas.1102247108

J. Liang and G. Mills, AMPK: a contextual oncogene or tumor suppressor? Cancer research, pp.2929-2935, 2013.

M. Bonini and B. Gantner, The multifaceted activities of AMPK in tumor progression--why the " one size fits all " definition does not fit at all? IUBMB Life, pp.889-896, 2013.

B. Faubert, E. Vincent, M. Poffenberger, and R. Jones, The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator, Cancer Letters, vol.356, issue.2, 2014.
DOI : 10.1016/j.canlet.2014.01.018

B. Faubert, G. Boily, S. Izreig, T. Griss, B. Samborska et al., AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In??Vivo, Cell Metabolism, vol.17, issue.1, pp.113-124, 2013.
DOI : 10.1016/j.cmet.2012.12.001

C. Li, V. Liu, P. Chiu, K. Yao, H. Ngan et al., Reduced expression of AMPK-??1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer, Molecular Cancer, vol.13, issue.1, p.49, 2014.
DOI : 10.1517/14712598.3.2.319

J. Zhou, W. Huang, R. Tao, S. Ibaragi, F. Lan et al., Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells, Oncogene, vol.321, issue.18, pp.1993-2002, 2009.
DOI : 10.1038/onc.2009.63

P. Sonveaux, F. Vegran, T. Schroeder, M. Wergin, J. Verrax et al., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, Journal of Clinical Investigation, vol.118, pp.3930-3942, 2008.
DOI : 10.1172/JCI36843DS1

A. Franchi, P. Silvestre, and J. Pouyssegur, A genetic approach to the role of energy metabolism in the growth of tumor cells: Tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration, International Journal of Cancer, vol.60, issue.6, pp.819-827, 1981.
DOI : 10.1002/ijc.2910270614

J. Chiche, L. Fur, Y. Vilmen, C. Frassineti, F. Daniel et al., In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: Key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH, International Journal of Cancer, vol.60, issue.7, pp.1511-1520, 2011.
DOI : 10.1002/ijc.26125

URL : https://hal.archives-ouvertes.fr/hal-00592155

K. Lim, K. Lim, A. Price, B. Orr, C. Eberhart et al., Inhibition of monocarboxylate transporter-4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner. Oncogene. 2013. www.impactjournals.com/oncotarget 68. Sanchez-Cespedes M. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome, Oncogene, vol.26, pp.7825-7832, 2007.

R. Bilton, N. Mazure, E. Trottier, M. Hattab, M. Dery et al., Arrest- defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF, J Biol Chem, vol.28, pp.31132-31140, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00321555