N. V. Buller, S. L. Rosekrans, J. Westerlund, and G. R. Van-den-brink, Hedgehog signaling and maintenance of homeostasis in the intestinal epithelium, Physiology (Bethesda), vol.27, issue.3, pp.148-155, 2012.

, Mesenchymal-epithelial interactions during digestive tract development? 3891

B. P. De-santa, G. R. Van-den-brink, and D. J. Roberts, Development and differentiation of the intestinal epithelium, Cell Mol Life Sci, vol.60, issue.7, pp.1322-1332, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00287641

D. M. Smith, R. C. Grasty, N. A. Theodosiou, C. J. Tabin, and N. M. Nascone-yoder, Evolutionary relationships between the amphibian, avian, and mammalian stomachs, Evol Dev, vol.2, issue.6, pp.348-359, 2000.

N. Narita, M. Bielinska, and D. B. Wilson, Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse, Dev Biol, vol.189, issue.2, pp.270-274, 1997.

P. De-santa-barbara and D. J. Roberts, Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13, Development, vol.129, issue.3, pp.551-561, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00287639

C. T. Kuo, E. E. Morrisey, R. Anandappa, K. Sigrist, M. M. Lu et al., GATA4 transcription factor is required for ventral morphogenesis and heart tube formation, Genes Dev, vol.11, issue.8, pp.1048-1060, 1997.

J. D. Molkentin, Q. Lin, S. A. Duncan, and E. N. Olson, Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis, Genes Dev, vol.11, issue.8, pp.1061-1072, 1997.

S. L. Ang, A. Wierda, D. Wong, K. A. Stevens, S. Cascio et al., The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins, Development, vol.119, issue.4, pp.1301-1315, 1993.

K. H. Kaestner, K. H. Lee, J. Schlondorff, H. Hiemisch, A. P. Monaghan et al., Six members of the mouse forkhead gene family are developmentally regulated, Proc Natl Acad Sci, vol.90, issue.16, pp.7628-7631, 1993.

D. Dufort, L. Schwartz, K. Harpal, and J. Rossant, The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis, Development, vol.125, issue.16, pp.3015-3025, 1998.

D. C. Weinstein, A. Ruiz-i-altaba, W. S. Chen, P. Hoodless, V. R. Prezioso et al., The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo, Cell, vol.78, issue.4, pp.575-588, 1994.

K. Zaret, Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins, Dev Biol, vol.209, issue.1, pp.1-10, 1999.

A. Rojas, W. Schachterle, S. M. Xu, F. Martin, and B. L. Black, Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer, Dev Biol, vol.346, issue.2, pp.346-355, 2010.

P. Fort, L. Guemar, E. Vignal, N. Morin, C. Notarnicola et al., Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration, Dev Biol, vol.350, issue.2, pp.451-463, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649555

C. Notarnicola, L. Guen, L. Fort, P. Faure, S. De et al., Dynamic expression patterns of RhoV/Chp and RhoU/ Wrch during chicken embryonic development, Dev Dyn, vol.237, issue.4, pp.1165-1171, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02267387

D. A. Loebel, J. B. Studdert, M. Power, T. Radziewic, V. Jones et al., forms, and dependence on epithelial-mesenchymal interactions, J Cell Biol, vol.107, issue.6, pp.2341-2349

M. Kedinger, P. Simon-assmann, F. Bouziges, C. Arnold, E. Alexandre et al., Smooth muscle actin expression during rat gut development and induction in fetal skin fibroblastic cells associated with intestinal embryonic epithelium, Differentiation, vol.43, issue.2, pp.87-97, 1990.

T. Koike and S. Yasugi, In vitro analysis of mesenchymal influences on the differentiation of stomach epithelial cells of the chicken embryo, Differentiation, vol.65, issue.1, pp.13-25, 1999.

B. B. Rawdon, Can gastric endoderm change the regionally specific inducing ability of presumptive small intestinal mesoderm?, Dev Dyn, vol.219, issue.3, pp.402-416, 2000.

M. Sumiya and T. Mizuno, Differentiation of the endoderm in digestive tract of the chick embryo cultured in vitelline membrane, in absence of mesenchyma, C R Acad Sci Hebd Seances Acad Sci D, vol.278, issue.11, pp.1529-1532, 1974.

S. Matsushita, Y. Ishii, P. J. Scotting, A. Kuroiwa, and S. Yasugi, Pre-gut endoderm of chick embryos is regionalized by 1.5 days of development, Dev Dyn, vol.223, issue.1, pp.33-47, 2002.

S. Yasugi and T. Mizuno, Molecular analysis of endoderm regionalization, Dev Growth Differ, vol.50, issue.1, pp.79-96, 2008.

K. Haffen, B. Lacroix, M. Kedinger, and P. M. Simon-assmann, Inductive properties of fibroblastic cell cultures derived from rat intestinal mucosa on epithelial differentiation, Differentiation, vol.23, issue.3, pp.226-233, 1983.

M. Kedinger, P. Simon-assmann, F. Bouziges, and K. Haffen, Epithelial-mesenchymal interactions in intestinal epithelial differentiation, Scand J Gastroenterol Suppl, vol.151, pp.62-69, 1988.

M. Kedinger, P. M. Simon-assmann, B. Lacroix, A. Marxer, H. P. Hauri et al., Fetal gut mesenchyme induces differentiation of cultured intestinal endodermal and crypt cells, Dev Biol, vol.113, issue.2, pp.474-483, 1986.

I. Duluc, J. N. Freund, C. Leberquier, and M. Kedinger, Fetal endoderm primarily holds the temporal and positional information required for mammalian intestinal development, J Cell Biol, vol.126, issue.1, pp.211-221, 1994.

K. Hayashi, S. Yasugi, and T. Mizuno, Pepsinogen gene transcription induced in heterologous epithelial-mesenchymal recombinations of chicken endoderms and glandular stomach mesenchyme, Development, vol.103, issue.4, pp.725-731, 1988.

D. J. Roberts, D. M. Smith, D. J. Goff, and C. J. Tabin, Epithelialmesenchymal signaling during the regionalization of the chick gut, Development, vol.125, issue.15, pp.2791-2801, 1998.

T. Montavon and N. Soshnikova, Hox gene regulation and timing in embryogenesis, Semin Cell Dev Biol, vol.34, pp.76-84, 2014.

Y. Yokouchi, J. Sakiyama, and A. Kuroiwa, Coordinated expression of Abd-B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo, Dev Biol, vol.169, issue.1, pp.76-89, 1995.

J. Aubin, U. Dery, M. Lemieux, P. Chailler, and L. Jeannotte, Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling, Development, vol.129, issue.17, pp.4075-4087, 2002.

F. Beck, F. Tata, and K. Chawengsaksophak, Homeobox genes and gut development, BioEssays, vol.22, issue.5, pp.431-441, 2000.

T. Kondo, P. Dolle, J. Zakany, and D. Duboule, Function of posterior HoxD genes in the morphogenesis of the anal sphincter, Development, vol.122, issue.9, pp.2651-2659, 1996.

T. Sekimoto, K. Yoshinobu, M. Yoshida, S. Kuratani, S. Fujimoto et al., Regionspecific expression of murine Hox genes implies the Hox codemediated patterning of the digestive tract, Genes Cells, vol.3, issue.1, pp.51-64, 1998.

D. M. Smith, C. Nielsen, C. J. Tabin, and D. J. Roberts, Roles of BMP signaling and Nkx2.5 in patterning at the chick midgutforegut boundary, Development, vol.127, issue.17, pp.3671-3681, 2000.

M. Whitman, Smads and early developmental signaling by the TGFbeta superfamily, Genes Dev, vol.12, issue.16, pp.2445-2462, 1998.

S. Faure, S. De, P. Barbara, D. J. Roberts, and M. Whitman, Endogenous patterns of BMP signaling during early chick development, Dev Biol, vol.244, issue.1, pp.44-65, 2002.

S. Faure, M. A. Lee, T. Keller, P. Ten-dijke, and M. Whitman, Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development, Development, vol.127, issue.13, pp.2917-2931, 2000.

A. M. Goldstein, K. C. Brewer, A. M. Doyle, N. Nagy, and D. J. Roberts, BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system, Mech Dev, vol.122, issue.6, pp.821-833, 2005.

S. Faure, M. Georges, J. Mckey, S. Sagnol, S. De et al., Expression pattern of the homeotic gene Bapx1 during early chick gastrointestinal tract development, Gene Expr Patterns, vol.13, issue.8, pp.287-292, 2013.

L. C. Murtaugh, L. Zeng, J. H. Chyung, and A. B. Lassar, The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis, Dev Cell, vol.1, issue.3, pp.411-422, 2001.

C. Nielsen, L. C. Murtaugh, J. C. Chyung, A. Lassar, and D. J. Roberts, Gizzard formation and the role of Bapx1, Dev Biol, vol.231, issue.1, pp.164-174, 2001.

B. P. De-santa, J. Williams, A. M. Goldstein, A. M. Doyle, C. Nielsen et al., Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development, Dev Dyn, vol.234, issue.2, pp.312-322, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00287632

N. A. Theodosiou and C. J. Tabin, Wnt signaling during development of the gastrointestinal tract, Dev Biol, vol.259, issue.2, pp.258-271, 2003.

M. Aitola, P. Carlsson, M. Mahlapuu, S. Enerback, and M. Pelto-huikko, Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions, Dev Dyn, vol.218, issue.1, pp.136-149, 2000.

M. Mahlapuu, M. Ormestad, S. Enerback, and P. Carlsson, The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm, Development, vol.128, issue.2, pp.155-166, 2001.

V. A. Mclin, R. Shah, N. P. Desai, and M. Jamrich, Identification and gastrointestinal expression of Xenopus laevis FoxF2, Int J Dev Biol, vol.54, issue.5, pp.919-924, 2010.

M. Ormestad, J. Astorga, and P. Carlsson, Differences in the embryonic expression patterns of mouse Foxf1 and -2 match their distinct mutant phenotypes, Dev Dyn, vol.229, issue.2, pp.328-333, 2004.

M. Ormestad, J. Astorga, H. Landgren, T. Wang, B. R. Johansson et al., Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production, Development, vol.133, issue.5, pp.833-843, 2006.

A. Buchberger, O. Pabst, T. Brand, K. Seidl, and H. H. Arnold, Chick NKx-2.3 represents a novel family member of vertebrate homologues to the Drosophila homeobox gene tinman: differential expression of cNKx-2.3 and cNKx-2.5 during heart and gut development, Mech Dev, vol.56, issue.1-2, pp.151-163, 1996.

S. Faure, J. Mckey, S. Sagnol, S. De, and P. Barbara, Enteric neural crest cells regulate vertebrate stomach patterning and differentiation, Development, vol.142, issue.2, pp.331-342, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01753298

, Mesenchymal-epithelial interactions during digestive tract development? 3893

O. Pabst, A. Schneider, T. Brand, and H. H. Arnold, The mouse Nk2-3 homeodomain gene is expressed in gut mesenchyme during pre-and postnatal mouse development, Dev Dyn, vol.209, issue.1, pp.29-35, 1997.

B. Moniot, S. Biau, S. Faure, C. M. Nielsen, P. Berta et al., SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals, Development, vol.131, issue.15, pp.3795-3804, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00287635

D. M. Smith and C. J. Tabin, BMP signalling specifies the pyloric sphincter, Nature, vol.402, issue.6763, pp.748-749, 1999.

N. A. Theodosiou and C. J. Tabin, Sox9 and Nkx2.5 determine the pyloric sphincter epithelium under the control of BMP signaling, 2005.

, Dev Biol, vol.279, issue.2, pp.481-490

G. Zhao and J. B. Skeath, The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm, Development, vol.129, issue.5, pp.1165-1174, 2002.

Y. Li, J. Pan, C. Wei, J. Chen, Y. Liu et al., LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3, BMC Biol, vol.12, p.25, 2014.

A. Prakash, A. M. Udager, D. A. Saenz, and D. L. Gumucio, Roles for Nk2-5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments, Am J Physiol Gastrointest Liver Physiol, vol.307, issue.4, pp.430-436, 2014.

A. M. Udager, A. Prakash, D. A. Saenz, M. Schinke, T. Moriguchi et al., Proper development of the outer longitudinal smooth muscle of the mouse pylorus requires Nkx2-5 and Gata3, Gastroenterology, vol.146, issue.1, p.110, 2014.

M. P. Verzi, M. N. Stanfel, K. A. Moses, B. M. Kim, Y. Zhang et al., Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development, Gastroenterology, vol.136, issue.5, pp.1701-1710, 2009.

J. P. Tissier-seta, M. L. Mucchielli, M. Mark, M. G. Mattei, C. Goridis et al., Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach, Mech Dev, vol.51, issue.1, pp.3-15, 1995.

B. M. Kim, G. Buchner, I. Miletich, P. T. Sharpe, and R. A. Shivdasani, The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling, Dev Cell, vol.8, issue.4, pp.611-622, 2005.

B. M. Kim, I. Miletich, J. Mao, A. P. Mcmahon, P. A. Sharpe et al., Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen, Development, vol.134, pp.3603-3613, 1920.

C. Kosinski, D. E. Stange, C. Xu, A. S. Chan, C. Ho et al., Indian hedgehog regulates intestinal stem cell fate through epithelialmesenchymal interactions during development, Gastroenterology, vol.139, issue.3, pp.893-903, 2010.

J. Mao, B. M. Kim, M. Rajurkar, R. A. Shivdasani, and A. P. Mcmahon, Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract, Development, vol.137, issue.10, pp.1721-1729, 2010.

A. Sukegawa, T. Narita, T. Kameda, K. Saitoh, T. Nohno et al., The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium, Development, vol.127, issue.9, pp.1971-1980, 2000.

G. Gabella, Development of visceral smooth muscle, Results Probl Cell Differ, vol.38, pp.1-37, 2002.

C. Notarnicola, C. Rouleau, L. Guen, L. Virsolvy, A. Richard et al., The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle, Gastroenterology, vol.143, issue.3, pp.681-689, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02542417

F. P. Johnson, The development of the mucous membrane of the large intestine and vermiform process in the human embryo, Am J Anat, vol.14, pp.187-233, 1913.

M. Fu, P. K. Tam, M. H. Sham, and V. C. Lui, Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study, Anat Embryol (Berl), vol.208, issue.1, pp.33-41, 2004.

A. S. Wallace and A. J. Burns, Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract, Cell Tissue Res, vol.319, issue.3, pp.367-382, 2005.

A. E. Shyer, T. Tallinen, N. L. Nerurkar, Z. Wei, E. S. Gil et al., Villification: how the gut gets its villi, Science, vol.342, issue.6155, pp.212-218, 2013.

A. J. Burns, D. Champeval, L. Douarin, and N. M. , Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia, Dev Biol, vol.219, issue.1, pp.30-43, 2000.

A. J. Burns, L. Douarin, and N. M. , The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system, Development, vol.125, issue.21, pp.4335-4347, 1998.

N. M. Le-douarin and M. A. Teillet, The migration of neural crest cells to the wall of the digestive tract in avian embryo, J Embryol Exp Morphol, vol.30, issue.1, pp.31-48, 1973.

C. L. Yntema and W. S. Hammond, The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo, J Comp Neurol, vol.101, issue.2, pp.515-541, 1954.

C. L. Fairman, M. Clagett-dame, V. A. Lennon, and M. L. Epstein, Appearance of neurons in the developing chick gut, Dev Dyn, vol.204, issue.2, pp.192-201, 1995.

M. A. Breau, A. Dahmani, F. Broders-bondon, J. P. Thiery, and S. Dufour, Beta1 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells, Development, vol.136, issue.16, pp.2791-2801, 2009.

S. E. Akbareian, N. Nagy, C. E. Steiger, J. D. Mably, S. A. Miller et al., Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production, Dev Biol, vol.382, issue.2, pp.446-456, 2013.

J. B. Furness, The organisation of the autonomic nervous system: peripheral connections, Auton Neurosci, vol.130, issue.1-2, pp.1-5, 2006.

N. Nekrep, J. Wang, T. Miyatsuka, and M. S. German, Signals from the neural crest regulate beta-cell mass in the pancreas, Development, vol.135, issue.12, pp.2151-2160, 2008.

C. S. Potten, Epithelial cell growth and differentiation. II. Intestinal apoptosis, Am J Physiol, vol.273, issue.2, pp.253-257, 1997.

R. Barros, J. N. Freund, L. David, and R. Almeida, Gastric intestinal metaplasia revisited: function and regulation of CDX2, Trends Mol Med, vol.18, issue.9, pp.555-563, 2012.

J. C. Mills and R. A. Shivdasani, Gastric epithelial stem cells, Gastroenterology, vol.140, issue.2, pp.412-424, 2011.

A. Grapin-botton, Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin's Ph.D. thesis, Int J Dev Biol, vol.49, issue.2-3, pp.335-347, 2005.

V. A. Mclin, S. J. Henning, and M. Jamrich, The role of the visceral mesoderm in the development of the gastrointestinal tract, Gastroenterology, vol.136, issue.7, pp.2074-2091, 2009.

N. Barker, Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration, Nat Rev Mol Cell Biol, vol.15, issue.1, pp.19-33, 2014.

M. Kedinger, O. Lefebvre, I. Duluc, J. N. Freund, and P. Simon-assmann, Cellular and molecular partners involved in gut morphogenesis and differentiation, Philos Trans R Soc Lond B Biol Sci, vol.353, pp.847-856, 1370.

P. Simon-assmann, C. Spenle, O. Lefebvre, and M. Kedinger, The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions, Prog Mol Biol Transl Sci, vol.96, pp.175-206, 2010.

A. P. Sappino, P. Y. Dietrich, O. Skalli, S. Widgren, and G. Gabbiani, Colonic pericryptal fibroblasts. Differentiation pattern in embryogenesis and phenotypic modulation in epithelial proliferative lesions, Virchows Arch A Pathol Anat Histopathol, vol.415, issue.6, pp.551-557, 1989.

M. S. Islam, M. Kusakabe, K. Horiguchi, S. Iino, T. Nakamura et al., PDGF and TGF-beta promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice, Br J Pharmacol, vol.171, issue.2, pp.375-388, 2014.

N. Lahar, N. Y. Lei, J. Wang, Z. Jabaji, S. C. Tung et al., Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium, PLoS One, vol.6, issue.11, p.26898, 2011.

D. W. Powell, R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Saada et al., Myofibroblasts. II. Intestinal subepithelial myofibroblasts, Am J Physiol, vol.277, issue.2, pp.183-201, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01931267

D. W. Powell, R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Saada et al., Myofibroblasts. I. Paracrine cells important in health and disease, Am J Physiol, vol.277, issue.1, pp.1-9, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01931267

D. E. Bockman and G. S. Sohal, A new source of cells contributing to the developing gastrointestinal tract demonstrated in chick embryos, Gastroenterology, vol.114, issue.5, pp.878-882, 1998.

A. Andoh, S. Bamba, Y. Fujiyama, M. Brittan, and N. A. Wright, Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response, J Gastroenterol, vol.40, issue.12, pp.1089-1099, 2005.

R. C. Mifflin, I. V. Pinchuk, J. I. Saada, and D. W. Powell, Intestinal myofibroblasts: targets for stem cell therapy, Am J Physiol Gastrointest Liver Physiol, vol.300, issue.5, pp.684-696, 2011.

G. Gabbiani, The cellular derivation and the life span of the myofibroblast, Pathol Res Pract, vol.192, issue.7, pp.80092-80098, 1996.

L. Ronnov-jessen, O. W. Petersen, V. E. Koteliansky, and M. J. Bissell, The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells, J Clin Invest, vol.95, issue.2, pp.859-873, 1995.

M. Plateroti, D. C. Rubin, I. Duluc, R. Singh, C. Foltzer-jourdainne et al., Subepithelial fibroblast cell lines from different levels of gut axis display regional characteristics, Am J Physiol, vol.274, issue.5, pp.945-954, 1998.

R. T. Thomason, D. M. Bader, and N. I. Winters, Comprehensive timeline of mesodermal development in the quail small intestine, Dev Dyn, vol.241, issue.11, pp.1678-1694, 2012.

P. A. Hall, P. J. Coates, B. Ansari, and D. Hopwood, Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis, J Cell Sci, vol.107, pp.3569-3577, 1994.

D. W. Powell, I. V. Pinchuk, J. I. Saada, X. Chen, and R. C. Mifflin, Mesenchymal cells of the intestinal lamina propria, Annu Rev Physiol, vol.73, pp.213-237, 2011.

N. Y. Lei, Z. Jabaji, J. Wang, V. S. Joshi, G. J. Brinkley et al., Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells, PLoS One, vol.9, issue.1, p.84651, 2014.

T. M. Yeung, L. A. Chia, C. M. Kosinski, and C. J. Kuo, Regulation of self-renewal and differentiation by the intestinal stem cell niche, Cell Mol Life Sci, vol.68, issue.15, pp.2513-2523, 2011.

C. Fritsch, E. A. Swietlicki, O. Lefebvre, M. Kedinger, H. Iordanov et al., Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis, J Clin Invest, vol.110, issue.11, pp.1629-1641, 2002.

A. Andoh, S. Fujino, Y. Hirai, and Y. Fujiyama, Epimorphin expression in human colonic myofibroblasts, Int J Mol Med, vol.13, issue.1, pp.57-61, 2004.

Y. Wang, L. Wang, H. Iordanov, E. A. Swietlicki, Q. Zheng et al., Epimorphin (-/-) mice have increased intestinal growth, decreased susceptibility to dextran sodium sulfate colitis, and impaired spermatogenesis, 2006.

, J Clin Invest, vol.116, issue.6, pp.1535-1546

A. Shaker, E. A. Swietlicki, L. Wang, S. Jiang, B. Onal et al., Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion, 2010.

, J Clin Invest, vol.120, issue.6, pp.2081-2093

M. Z. Michael, S. M. O'connor, N. G. Van-holst-pellekaan, G. P. Young, and R. J. James, Reduced accumulation of specific micro-RNAs in colorectal neoplasia, Mol Cancer Res, vol.1, issue.12, pp.882-891, 2003.

R. R. Chivukula, G. Shi, A. Acharya, E. W. Mills, L. R. Zeitels et al., An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration, Cell, vol.157, issue.5, pp.1104-1116, 2014.

L. Zeng, A. D. Carter, and S. J. Childs, miR-145 directs intestinal maturation in zebrafish, Proc Natl Acad Sci, vol.106, issue.42, pp.17793-17798, 2009.

T. Katano, A. Ootani, T. Mizoshita, S. Tanida, H. Tsukamoto et al., Gastric mesenchymal myofibroblasts maintain stem cell activity and proliferation of murine gastric epithelium in vitro, Am J Pathol, vol.185, issue.3, pp.798-807, 2015.

A. K. San-roman, C. D. Jayewickreme, L. C. Murtaugh, and R. A. Shivdasani, Wnt secretion from epithelial cells and subepithelial myofibroblasts is not required in the mouse intestinal stem cell niche in vivo, Stem Cell Reports, vol.2, issue.2, pp.127-134, 2014.

S. Biau, J. S. Fan, and C. M. , Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling, Biol Open, vol.2, issue.2, pp.144-155, 2013.

S. R. Demeester and T. R. Demeester, Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy, Ann Surg, vol.231, issue.3, pp.303-321, 2000.

D. L. Lavery, A. M. Nicholson, R. Poulsom, R. Jeffery, A. Hussain et al., The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands, Gut, vol.63, issue.12, pp.1854-1863, 2014.

J. M. Slack, Homoeotic transformations in man: implications for the mechanism of embryonic development and for the organization of epithelia, J Theor Biol, vol.114, issue.3, pp.463-490, 1985.

Y. Q. Bai, H. Yamamoto, Y. Akiyama, H. Tanaka, T. Takizawa et al., Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach, Cancer Lett, vol.176, issue.1, pp.47-55, 2002.

D. G. Silberg, J. Sullivan, E. Kang, G. P. Swain, J. Moffett et al., Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice, Gastroenterology, vol.122, issue.3, pp.689-696, 2002.

J. N. Freund, I. Duluc, J. M. Reimund, I. Gross, and C. Domon-dell, Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities, World J Gastroenterol, vol.21, issue.5, pp.1436-1443, 2015.

H. Mutoh, S. Sakurai, K. Satoh, H. Osawa, Y. Hakamata et al., Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice, Gut, vol.53, issue.10, pp.1416-1423, 2004.

M. Quante, S. P. Tu, H. Tomita, T. Gonda, S. S. Wang et al., Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth, Cancer Cell, vol.19, issue.2, pp.257-272, 2011.

M. Tatematsu, T. Tsukamoto, and T. Mizoshita, Role of Helicobacter pylori in gastric carcinogenesis: the origin of gastric cancers and heterotopic proliferative glands in Mongolian gerbils, Helicobacter, vol.10, issue.2, pp.97-106, 2005.

A. Calon, E. Lonardo, A. Berenguer-llergo, E. Espinet, X. Hernando-momblona et al., Stromal gene expression defines poor-prognosis subtypes in colorectal cancer, Nat Genet, vol.47, issue.4, pp.320-329, 2015.

A. J. Barlow, A. S. Wallace, N. Thapar, and A. J. Burns, Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation, Development, vol.135, issue.9, pp.1681-1691, 2008.

J. M. Delalande, D. Natarajan, B. Vernay, M. Finlay, C. Ruhrberg et al., Vascularisation is not necessary for gut colonisation by enteric neural crest cells, Dev Biol, vol.385, issue.2, pp.220-229, 2014.

J. Hatch and Y. S. Mukouyama, Spatiotemporal mapping of vascularization and innervation in the fetal murine intestine, 2015.

, Dev Dyn, vol.244, issue.1, pp.56-68

N. Nagy, O. Mwizerwa, K. Yaniv, L. Carmel, R. Pieretti-vanmarcke et al., Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling, Dev Biol, vol.330, issue.2, pp.263-272, 2009.