Utility of Elastography and Contrast-enhanced Ultrasound For The Differentiation of Tumor Modifications Between Antiangiogenic and Cytotoxic Therapy

Alexandre Dizeux, Thomas Payen, Guillaume Barrois, Capucine Baldini, Michele Lamuraglia, Delphine Le Guillou Buffello, Eva Comperat, Jean-Luc Gennisson, Mickael Tanter, S. Lori Bridal

To cite this version:

HAL Id: inserm-01155177
https://www.hal.inserm.fr/inserm-01155177
Submitted on 26 May 2015
Utility of Elastography and Contrast-enhanced Ultrasound For The Differentiation of Tumor Modifications Between Antiangiogenic and Cytotoxic Therapy

Alexandre Dizeux1, Thomas Payen1, Guillaume Barrois1, Capucine Baldini1, Michele Lamuraglia1,2 Delphine Le Guillou Buffello1, Eva Comperat2, Jean-Luc Gennisson3, Mickael Tanter1, S. Lori Bridal1

1Laboratoire d’Imagerie Biomédicale UPMC, CNRS UMR7371, INSERM U1146, Paris, France
2Service d’Oncologie, Département de Medecine Interne, APHP Louis-Mourier; Colombes, France
3Central Department of Pathological Anatomy and Cytology, GH Pitié-Salpêtrière, AP-HP, Paris, France
4Institut Langevin ESPCI ParisTech, CNRS UMR7587, INSERM U979, Paris, France

Abstract – Robust, novel information on tumor microenvironment would improve therapeutic follow-up in oncology. Shear wave elastography (SWE) evaluates Young’s modulus (stiffness) based on shear wave velocity. Dynamic contrast-enhanced ultrasound (CEUS) traces microvascular flow with intravascular microbubbles. In this study, an ectopic tumor model was modified using two different types of drugs a cytotoxic (cyclophosphamide) and an anti-angiogenic (sunitinib). Both CEUS and SWE imaging were sensitive to functional, physiological and mechanical modifications of the tumor and provided complementarity information to describe these modifications.

Keywords – Therapy monitoring, Contrast-Enhanced Ultrasound, Shear Wave Elastography, Tumor microenvironment.

I. INTRODUCTION

Solid tumors are comprised of cancer cells and stromal cells embedded in an altered extra-cellular matrix (ECM) and fed by a vascular network. Hypoxic regions of tumors and the tumor microenvironment (TME) can provoke the expression of HIFα-factor which initiates synthesis of growth factors such as VEGF, PDGF, FGF implicated in neovascularization [1]. In vivo follow-up of TME modifications will increase understanding of mechanisms underlying tumor development. For example, the functional properties of the new microvascular network can be quantified by contrast-enhanced ultrasound CEUS (contrast agent remains in vascular compartment) [2] and the formation of necrosis and fibrosis in the tumor can be assessed by SWE [3]. Our goal was to evaluate sensitivity and complementarity for dynamic contrast-enhanced ultrasound (CEUS) and shear wave elastography (SWE) to modifications of the TME during cytotoxic and antiangiogenic therapies in ectopic, murine Lewis Lung Carcinoma (LLC) tumors. The cytotoxic drug (cyclophosphamide) prevents cancer-cell duplication. The antiangiogenic drug (sunitinib) effects the TME by inhibiting several receptors involved in tumor vascularization. Modifications detected by imaging were compared to modifications in the TME (fibrosis and necrosis).

II. MATERIALS & METHODS

II.1. Pre-clinical tumor model & therapies

Lewis Lung Carcinoma (LLC) fragments (20-40 mm3) were implanted in the right flank of 7-week-old nude mice. Three groups were defined, a group of 24 mice were treated with sunitinib (antiangiogenic). Another of 26 mice were treated with cyclophosphamide (cytotoxic) and a placebo group with 26 mice was treated only with drug vehicle. Six days after implantation of fragments, sunitinib was administrated orally at a concentration of 40mg/kg/day and cyclophosphamide was administrated by intraperitoneal injection at a concentration of 150mg/kg for 3 days.

II.2. Shear Wave Elastography (SWE)

SWE measurements were carried out with a clinical ultrasound system (Aixplorer, SuperSonic Imagine) using an SL15-4 probe with a bandwidth of 4-15 MHz and a central frequency around 8 MHz. For each tumor, SWE data were acquired from 3 independent planes along both the longitudinal and transverse directions (6 SWE measurements per tumor). Data were acquired using penetration mode with a color scale ranging from 0 to 50 kPa.

II.3. CEUS & data processing

Contrast imaging was performed with another clinical ultrasound system (Sequoia 512; Siemens) with a broadband 7-14 MHz transducer in cadence contrast pulse sequencing mode. A commercially available contrast agent, SonoVue™, was used. Regions with no contrast-enhancement were then excluded and the echo-power from the perfused region was measured [4]. A lognormal bolus model was fit to the resulting echo-power curve.

Figure 1: Functional parameters extracted from perfused area. Several perfusion parameters were estimated (Fig. 1): peak-enhancement (PE), mean transit time (MTT), wash-in and washout rates (WIR, WOR). CEUS was followed for 13 days from the initiation of cytotoxic (N=16), anti-angiogenic (N=16), and placebo (N=18) therapy.

II.4. Immunohistochemistry

Blind evaluation of histological slides was made by a pathologist with 12 years of experience. Tumors that were not used for other analysis were prepared for histology at the end of follow-up study (Day 13). Thus, percentage of necrosis and fibrosis were assessed with HES and Red Sirius staining respectively for: 8 tumors in the cytotoxic group, 14 in the anti-angiogenic group and 19 in the placebo group.

III. RESULTS

Tumor volumes are summarized in Figure 2. From Day 3 after the beginning of therapy, tumor volume of the cytotoxic group (20 ± 10mm3) was significantly lower compared to both the anti-angiogenic (42 ± 24mm3, p=0.02) and the placebo (37 ± 16 mm3, p=0.003) groups. This difference was maintained throughout the follow-up to Day 13. The tumor volume of the placebo group was only significantly higher than for the anti-angiogenic group (p=0.046) on Day 13.
At Day 13, the percentage of both necrosis and fibrosis of the anti-angiogenic group (20.5 ± 11.3 %, 14.5 ± 9.9 %, respectively) is significantly higher than for cytotoxic (7.8 ± 5.3 %, p=0.01; 5.6 ± 5.0 %, p=0.04) and placebo groups (7.6 ± 5.5 %, p=0.0004; 6.4 ± 6.9 %, p=0.01). At the same time during therapeutic follow-up, the percentage of unperfused area is significantly higher in the anti-angiogenic group (29 ± 21 %) compared to the cytotoxic (7.3 ± 15 %, p=0.004) and placebo groups (7.5 ± 13 %, p=0.002).

Table 1 summarizes the % variation of each measured parameter from the start to the end of therapy. During cytotoxic therapy, only the SWE was significantly modified. The variation of tumor stiffness for the cytotoxic group was 3 to 4 times lower than that for other groups.

DISCUSSION & CONCLUSION

Longitudinal follow-up of tumor modifications was performed in vivo using CEUS, SWE and ex vivo with immunohistochemistry. One of the main objectives was to understand how the two imaging modalities reflect changes in the tumor produced by a cytotoxic drug (cyclophosphamide) vs. changes in the TME produced by an anti-angiogenic drug (sunitinib).

The high mean stiffness of tumors in the anti-angiogenic group (14.1 ± 3.6 kPa) was significantly higher than for the cytotoxic group (9.8 ± 2.8 kPa, p<0.005) and the placebo group (12.0 ± 2.4 kPa, p=0.002). Differences remained significant from Days 7 to 13 (anti-angiogenic vs. cytotoxic, p=0.003; vs. placebo, p=0.002).

The percentage of necrosis and fibrosis as assessed by histology on Day 13 are presented in Figure 3. The level of necrosis and fibrosis, respectively, in the anti-angiogenic group (n=14, HES = 20.5 ± 11.3 %; Sirius red = 14.5 ± 9.9 %) is significantly higher than in the cytotoxic (n=8, HES = 7.8 ± 5.3 %, p=0.01; Sirius red = 5.6 ± 5.0 %, p=0.04) and the placebo (n=19, HES = 7.6 ± 5.5 %, p=0.0004; Sirius red = 6.4 ± 6.9 %, p = 0.01) groups.

Finally, modifications of parameters observed with CEUS were associated with changes in the flow and distribution in the functional microvessels. The variation of tumor stiffness for the cytotoxic group was 3 to 4 times lower than that for other groups.

REFERENCES

