H. Murray, J. Berman, C. Davies, and N. Saravia, Advances in leishmaniasis, The Lancet, vol.366, issue.9496, pp.1561-1577, 2005.
DOI : 10.1016/S0140-6736(05)67629-5

V. Rodrigues, A. Cordeiro-da-silva, M. Laforge, A. Ouaissi, and K. Akharid, Impairment of T Cell Function in Parasitic Infections, PLoS Neglected Tropical Diseases, vol.137, issue.Suppl 1, p.24551250, 2014.
DOI : 10.1371/journal.pntd.0002567.t002

V. Rodrigues, A. Cordeiro-da-silva, M. Laforge, A. Ouaissi, and R. Silvestre, Modulation of mammalian apoptotic pathways by intracellular protozoan parasites, Cellular Microbiology, vol.208, issue.3, pp.325-333, 2012.
DOI : 10.1111/j.1462-5822.2011.01737.x

J. Estaquier, F. Vallette, J. Vayssiere, and B. Mignotte, The Mitochondrial Pathways of Apoptosis, Adv Exp Med Biol, vol.942, pp.157-183, 2012.
DOI : 10.1007/978-94-007-2869-1_7

K. Caradonna, J. Engel, D. Jacobi, C. Lee, and B. Burleigh, Host Metabolism Regulates Intracellular Growth of Trypanosoma cruzi, Cell Host & Microbe, vol.13, issue.1, pp.108-117, 2013.
DOI : 10.1016/j.chom.2012.11.011

J. Brunton, S. Steele, B. Ziehr, N. Moorman, and T. Kawula, Feeding Uninvited Guests: mTOR and AMPK Set the Table for Intracellular Pathogens, PLoS Pathogens, vol.8, issue.10, p.24098109, 2013.
DOI : 10.1371/journal.ppat.1003552.g001

J. Mankouri and M. Harris, Viruses and the fuel sensor: the emerging link between AMPK and virus replication, Reviews in Medical Virology, vol.331, issue.4, pp.205-212, 2011.
DOI : 10.1002/rmv.687

B. Viollet, S. Horman, J. Leclerc, L. Lantier, and M. Foretz, AMPK inhibition in health and disease, Critical Reviews in Biochemistry and Molecular Biology, vol.279, issue.2, pp.276-295, 2010.
DOI : 10.1152/ajplung.90210.2008

URL : https://hal.archives-ouvertes.fr/inserm-00489848

S. Hawley, J. Boudeau, J. Reid, K. Mustard, and L. Udd, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, Journal of Biology, vol.2, issue.4, pp.28-14511394, 2003.
DOI : 10.1186/1475-4924-2-28

A. Woods, S. Johnstone, K. Dickerson, F. Leiper, and L. Fryer, LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade, Current Biology, vol.13, issue.22, pp.2004-2008, 2003.
DOI : 10.1016/j.cub.2003.10.031

URL : https://hal.archives-ouvertes.fr/inserm-00390855

A. Woods, K. Dickerson, R. Heath, S. Hong, and M. Momcilovic, Ca2+/calmodulin-dependent protein kinase kinase-?? acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metabolism, vol.2, issue.1, pp.21-33, 2005.
DOI : 10.1016/j.cmet.2005.06.005

S. Hawley, D. Pan, K. Mustard, L. Ross, and J. Bain, Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.cmet.2005.05.009

E. Verdin, M. Hirschey, L. Finley, and M. Haigis, Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling, Trends in Biochemical Sciences, vol.35, issue.12, pp.669-675, 2010.
DOI : 10.1016/j.tibs.2010.07.003

N. Ruderman, X. Xu, L. Nelson, J. Cacicedo, and A. Saha, AMPK and SIRT1: a longstanding partnership?, Am J Physiol Endocrinol Metab, vol.298, 2009.

S. Austin and J. St-pierre, PGC1?? and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders, Journal of Cell Science, vol.125, issue.21, pp.4963-4971, 2012.
DOI : 10.1242/jcs.113662

E. Seifert, A. Caron, K. Morin, J. Coulombe, and X. He, SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice, The FASEB Journal, vol.26, issue.2, pp.555-566, 2012.
DOI : 10.1096/fj.11-193979

M. Mcconville, D. De-souza, E. Saunders, V. Likic, and T. Naderer, Living in a phagolysosome; metabolism of Leishmania amastigotes, Trends in Parasitology, vol.23, issue.8, pp.368-375, 2007.
DOI : 10.1016/j.pt.2007.06.009

I. Rabhi, S. Rabhi, R. Ben-othman, A. Rasche, and A. Daskalaki, Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View, PLoS Neglected Tropical Diseases, vol.6, issue.8, p.22928052, 2012.
DOI : 10.1371/journal.pntd.0001763.s003

URL : https://hal.archives-ouvertes.fr/pasteur-00726648

M. Jaramillo, M. Gomez, O. Larsson, M. Shio, and I. Topisirovic, Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection, Cell Host & Microbe, vol.9, issue.4, pp.331-341, 2011.
DOI : 10.1016/j.chom.2011.03.008

S. Smith and I. Snyder, Effect of lipopolysaccharide and lipid A on mouse liver pyruvate kinase activity, Infect Immun, vol.12, pp.993-998, 1975.

T. Sajic, A. Hainard, A. Scherl, A. Wohlwend, and F. Negro, STAT6 promotes bi-directional modulation of PKM2 in liver and adipose inflammatory cells in Rosiglitazone-treated mice, Scientific Reports, vol.7, p.23917405, 2013.
DOI : 10.1038/srep02350

L. Yang, M. Xie, M. Yang, Y. Yu, and S. Zhu, PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis, Nature Communications, vol.2008, pp.4436-4446, 2014.
DOI : 10.1016/j.cmet.2011.04.008

L. Carvalho, E. Pearce, and P. Scott, Functional Dichotomy of Dendritic Cells following Interaction with Leishmania braziliensis: Infected Cells Produce High Levels of TNF-??, whereas Bystander Dendritic Cells Are Activated to Promote T Cell Responses, The Journal of Immunology, vol.181, issue.9, pp.6473-6480, 2008.
DOI : 10.4049/jimmunol.181.9.6473

M. Resende, D. Moreira, A. J. Cunha, J. Neves, and B. , Leishmania-Infected MHC Class IIhigh Dendritic Cells Polarize CD4+ T Cells toward a Nonprotective T-bet+ IFN-??+ IL-10+ Phenotype, The Journal of Immunology, vol.191, issue.1, pp.262-273, 2013.
DOI : 10.4049/jimmunol.1203518

A. Cronemberger-andrade, L. Aragao-franca, C. De-araujo, V. Rocha, and C. Borges-silva-mda, Extracellular Vesicles from Leishmania-Infected Macrophages Confer an Anti-infection Cytokine-Production Profile to Na??ve Macrophages, PLoS Neglected Tropical Diseases, vol.289, issue.18, p.25232947, 2014.
DOI : 10.1371/journal.pntd.0003161.g004

T. Sakamoto and M. Seiki, A Membrane Protease Regulates Energy Production in Macrophages by Activating Hypoxia-inducible Factor-1 via a Non-proteolytic Mechanism, Journal of Biological Chemistry, vol.285, issue.39, pp.29951-29964, 2010.
DOI : 10.1074/jbc.M110.132704

A. Garedew, S. Henderson, and S. Moncada, Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death, Cell Death Differ, vol.17, p.20339378, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521163

C. Canto, Z. Gerhart-hines, J. Feige, M. Lagouge, and L. Noriega, AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.276, issue.7241, pp.1056-1060, 2009.
DOI : 10.1038/nature07813

URL : https://hal.archives-ouvertes.fr/inserm-00383329

J. Rodgers, C. Lerin, W. Haas, S. Gygi, and B. Spiegelman, Nutrient control of glucose homeostasis through a complex of PGC-1?? and SIRT1, Nature, vol.103, issue.7029, pp.113-118, 2005.
DOI : 10.1101/gad.1164804

A. Brunet, L. Sweeney, J. Sturgill, K. Chua, and P. Greer, Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase, Science, vol.303, issue.5666, pp.2011-2015, 2004.
DOI : 10.1126/science.1094637

A. Purushotham, T. Schug, Q. Xu, S. Surapureddi, and X. Guo, Hepatocyte-Specific Deletion of SIRT1 Alters Fatty Acid Metabolism and Results in Hepatic Steatosis and Inflammation, Cell Metabolism, vol.9, issue.4, pp.327-338, 2009.
DOI : 10.1016/j.cmet.2009.02.006

C. Canto and J. Auwerx, PGC-1??, SIRT1 and AMPK, an energy sensing network that controls energy expenditure, Current Opinion in Lipidology, vol.20, issue.2, pp.98-105, 2009.
DOI : 10.1097/MOL.0b013e328328d0a4

F. Lan, J. Cacicedo, N. Ruderman, and Y. Ido, SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1: POSSIBLE ROLE IN AMP-ACTIVATED PROTEIN KINASE ACTIVATION, Journal of Biological Chemistry, vol.283, issue.41, pp.27628-27635, 2008.
DOI : 10.1074/jbc.M805711200

X. Hou, S. Xu, K. Maitland-toolan, K. Sato, and B. Jiang, SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.283, issue.29, pp.20015-20026, 2008.
DOI : 10.1074/jbc.M802187200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2459285

M. Fulco, Y. Cen, P. Zhao, E. Hoffman, and M. Mcburney, Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt, Developmental Cell, vol.14, issue.5, pp.661-673, 2008.
DOI : 10.1016/j.devcel.2008.02.004

E. Gazanion, D. Garcia, R. Silvestre, C. Gerard, and J. Guichou, The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation, Molecular Microbiology, vol.382, issue.1, p.21819459, 2011.
DOI : 10.1111/j.1365-2958.2011.07799.x

S. Michan and D. Sinclair, Sirtuins in mammals: insights into their biological function, Biochemical Journal, vol.404, issue.1, pp.1-13, 2007.
DOI : 10.1042/BJ20070140

K. Hassani and M. Olivier, Immunomodulatory Impact of Leishmania-Induced Macrophage Exosomes: A Comparative Proteomic and Functional Analysis, PLoS Neglected Tropical Diseases, vol.42, issue.1, p.23658846, 2013.
DOI : 10.1371/journal.pntd.0002185.s006

N. Santarem, G. Racine, R. Silvestre, A. Cordeiro-da-silva, and M. Ouellette, Exoproteome dynamics in Leishmania infantum, Journal of Proteomics, vol.84, pp.106-118, 2013.
DOI : 10.1016/j.jprot.2013.03.012

M. Shio, K. Hassani, A. Isnard, B. Ralph, and I. Contreras, Host cell signalling and leishmania mechanisms of evasion, J Trop Med, vol.2012, pp.819512-819522, 2012.

K. Akarid, D. Arnoult, J. Micic-polianski, J. Sif, and J. Estaquier, Leishmania major-mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c, Journal of Leukocyte Biology, vol.76, issue.1, pp.95-103, 2004.
DOI : 10.1189/jlb.1001877

J. Kim, I. Tchernyshyov, G. Semenza, and C. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia, Cell Metabolism, vol.3, issue.3, pp.177-185, 2006.
DOI : 10.1016/j.cmet.2006.02.002

I. Papandreou, R. Cairns, L. Fontana, A. Lim, and N. Denko, HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metabolism, vol.3, issue.3, pp.187-197, 2006.
DOI : 10.1016/j.cmet.2006.01.012

D. Moreira, N. Santarem, I. Loureiro, J. Tavares, and A. Silva, Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence, PLoS Neglected Tropical Diseases, vol.95, issue.Pt 2, p.22292094, 2012.
DOI : 10.1371/journal.pntd.0001469.s004

URL : https://hal.archives-ouvertes.fr/inserm-00691462

L. Resende, B. Roatt, R. Aguiar-soares, K. Viana, and L. Mendonca, Cytokine and nitric oxide patterns in dogs immunized with LBSap vaccine, before and after experimental challenge with Leishmania chagasi plus saliva of Lutzomyia longipalpis, Veterinary Parasitology, vol.198, issue.3-4, pp.371-381, 2013.
DOI : 10.1016/j.vetpar.2013.09.011

J. Cunha, E. Carrillo, C. Sanchez, I. Cruz, and J. Moreno, Characterization of the biology and infectivity of Leishmania infantum viscerotropic and dermotropic strains isolated from HIV+ and HIV- patients in the murine model of visceral leishmaniasis, Parasites & Vectors, vol.6, issue.1, pp.122-132, 2013.
DOI : 10.1371/journal.pntd.0001741

H. Chen, M. Vermulst, Y. Wang, A. Chomyn, and T. Prolla, Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations, Cell, vol.141, issue.2, pp.280-289, 2010.
DOI : 10.1016/j.cell.2010.02.026

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, and M. Soty, Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Journal of Clinical Investigation, vol.120, issue.7, pp.2355-2369, 2010.
DOI : 10.1172/JCI40671DS1

URL : https://hal.archives-ouvertes.fr/inserm-00495746