J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser et al., Cancer Incidence and Mortality Worldwide: IARC CancerBase [Internet]: International Agency for Research on Cancer

N. Howlader, A. Noone, M. Krapcho, J. Garshell, D. Miller et al., National Cancer Institute; 2013 Available from: http://seer.cancer, Cancer Statistics Review, 1975.

I. Tannock, K. Fizazi, S. Ivanov, C. Karlsson, A. Fléchon et al., Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial, The Lancet Oncology, vol.14, issue.8, pp.760-768, 2013.
DOI : 10.1016/S1470-2045(13)70184-0

D. Petrylak, D. Ankerst, C. Jiang, C. Tangen, M. Hussain et al., Evaluation of Prostate-Specific Antigen Declines for Surrogacy in Patients Treated on SWOG 99-16, JNCI Journal of the National Cancer Institute, vol.98, issue.8, pp.516-537, 2006.
DOI : 10.1093/jnci/djj129

C. Proust-lima, J. Taylor, S. Williams, D. Ankerst, N. Liu et al., Determinants of Change in Prostate-Specific Antigen Over Time and Its Association With Recurrence After External Beam Radiation Therapy for Prostate Cancer in Five Large Cohorts, International Journal of Radiation Oncology*Biology*Physics, vol.72, issue.3, pp.782-91, 2008.
DOI : 10.1016/j.ijrobp.2008.01.056

URL : https://hal.archives-ouvertes.fr/inserm-00263863

M. Murawska, D. Rizopoulos, and E. Lesaffre, A Two-Stage Joint Model for Nonlinear Longitudinal Response and a Time-to-Event with Application in Transplantation Studies, Journal of Probability and Statistics, vol.15, issue.3957
DOI : 10.1002/sim.3153

J. Probab and . Stat, Available from: http://www.hindawi.com/journals/jps, p.2012, 2012.

L. Wu, W. Liu, G. Yi, and Y. Huang, Analysis of Longitudinal and Survival Data: Joint Modeling, Inference Methods, and Issues, Journal of Probability and Statistics, vol.57, issue.1, 2011.
DOI : 10.1214/009053605000000480

M. Sweeting and S. Thompson, Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture, Biometrical Journal, vol.27, issue.5, pp.750-63, 2011.
DOI : 10.1002/bimj.201100052

J. Ibrahim, H. Chu, and L. Chen, Basic Concepts and Methods for Joint Models of Longitudinal and Survival Data, Journal of Clinical Oncology, vol.28, issue.16, pp.2796-801, 2010.
DOI : 10.1200/JCO.2009.25.0654

J. Taylor and Y. Wang, Surrogate markers and joint models for longitudinal and survival data, Controlled Clinical Trials, vol.23, issue.6, pp.626-660, 2002.
DOI : 10.1016/S0197-2456(02)00234-9

M. Wulfsohn and A. Tsiatis, A Joint Model for Survival and Longitudinal Data Measured with Error, Biometrics, vol.53, issue.1, p.330, 1997.
DOI : 10.2307/2533118

A. Tsiatis and M. Davidian, Joint modeling of longitudinal and time-to-event data: an overview, Stat. Sin, vol.14, pp.809-843, 2004.

F. Hsieh, Y. Tseng, and J. Wang, Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited, Biometrics, vol.14, issue.4, pp.1037-1080, 2006.
DOI : 10.1111/j.1541-0420.2006.00570.x

L. Zhang, S. Beal, and L. Sheiner, Simultaneous vs. Sequential Analysis for Population PK/PD Data I: Best-Case Performance, Journal of Pharmacokinetics and Pharmacodynamics, vol.30, issue.6, pp.387-404, 2003.
DOI : 10.1023/B:JOPA.0000012998.04442.1f

R. Henderson, P. Diggle, and A. Dobson, Joint modelling of longitudinal measurements and event time data, Biostatistics, vol.1, issue.4, pp.465-80, 2000.
DOI : 10.1093/biostatistics/1.4.465

D. Rizopoulos, Joint Models for Longitudinal and Time-to-Event Data: With Applications in R, 2012.
DOI : 10.1201/b12208

C. Hu and M. Sale, A Joint Model for Nonlinear Longitudinal Data with Informative Dropout, Journal of Pharmacokinetics and Pharmacodynamics, vol.30, issue.1, pp.83-103, 2003.
DOI : 10.1023/A:1023249510224

M. Björnsson, L. Friberg, and U. Simonsson, Performance of Nonlinear Mixed Effects Models in the Presence of Informative Dropout, The AAPS Journal, vol.17, issue.1, pp.245-55, 2014.
DOI : 10.1208/s12248-014-9700-x

M. Vigan, J. Stirnemann, and F. Mentré, Evaluation of Estimation Methods and Power of Tests of Discrete Covariates in Repeated Time-to-Event Parametric Models: Application to Gaucher Patients Treated by Imiglucerase, The AAPS Journal, vol.16, issue.3, pp.415-438, 2014.
DOI : 10.1208/s12248-014-9575-x

URL : https://hal.archives-ouvertes.fr/inserm-00967034

C. Mbogning, K. Bleakley, and M. Lavielle, Joint modelling of longitudinal and repeated time-to-event data using nonlinear mixed-effects models and the stochastic approximation expectation???maximization algorithm, Journal of Statistical Computation and Simulation, vol.30, issue.8, pp.1512-1540, 2015.
DOI : 10.1007/s10928-012-9248-2

H. Tu, S. Jacobs, A. Borkowski, and N. Kyprianou, Incidence of apoptosis and cell proliferation in prostate cancer: Relationship with TGF-??1 and bcl-2 expression, International Journal of Cancer, vol.69, issue.5, pp.357-63, 1996.
DOI : 10.1002/(SICI)1097-0215(19961021)69:5<357::AID-IJC1>3.0.CO;2-4

T. Polascik, J. Oesterling, and A. Partin, PROSTATE SPECIFIC ANTIGEN, The Journal of Urology, vol.162, pp.293-306, 1999.
DOI : 10.1097/00005392-199908000-00003

D. Rizopoulos, G. Verbeke, and E. Lesaffre, Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.11, issue.3, pp.637-54, 2009.
DOI : 10.1111/j.1467-9868.2008.00704.x

R. Development, C. Team, . Development-core, and . Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, www.R-project.org. R Foundation for Statistical Computing, 2013.

J. Taylor, M. Yu, and H. Sandler, Individualized Predictions of Disease Progression Following Radiation Therapy for Prostate Cancer, Journal of Clinical Oncology, vol.23, issue.4, pp.816-841, 2005.
DOI : 10.1200/JCO.2005.12.156

B. Ribba, N. Holford, and F. Mentré, The Use of Model-Based Tumor-Size Metrics to Predict Survival, Clinical Pharmacology & Therapeutics, vol.2, issue.2, pp.133-138, 2014.
DOI : 10.1038/clpt.2014.111

URL : https://hal.archives-ouvertes.fr/inserm-01084276

M. Yu, N. Law, J. Taylor, and H. Sandler, Joint longitudinal survival cure models and their application to prostate cancer, Stat. Sin, vol.14, pp.835-62, 2004.

B. Ribba, N. Holford, P. Magni, I. Trocóniz, I. Gueorguieva et al., A Review of Mixed-Effects Models of Tumor Growth and Effects of Anticancer Drug Treatment Used in Population Analysis, CPT Pharmacometrics Syst. Pharmacol., vol.59, issue.5, p.113, 2014.
DOI : 10.1016/j.jtbi.2012.12.013