X. Lladó, A. Oliver, M. Cabezas, J. Freixenet, J. C. Vilanova et al., Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches, Information Sciences, vol.186, issue.1, pp.164-185, 2012.
DOI : 10.1016/j.ins.2011.10.011

D. Garca-lorenzo, S. Prima, D. L. Arnold, D. L. Collins, and C. Barillot, Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis, IEEE Transactions on Medical Imaging, vol.30, issue.8, pp.1455-1467, 2011.
DOI : 10.1109/TMI.2011.2114671

M. Filippi, Diffusion tensor magnetic resonance imaging in multiple sclerosis, Neurology, vol.56, issue.3, pp.304-3011, 2001.
DOI : 10.1212/WNL.56.3.304

O. Commowick, P. Fillard, O. Clatz, and S. K. Warfield, Detection of DTI White Matter Abnormalities in Multiple Sclerosis Patients, [Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'08), Part I ], pp.975-982, 2008.
DOI : 10.1007/978-3-540-85988-8_116

URL : https://hal.archives-ouvertes.fr/inria-00502709

A. Dempster, N. Laird, R. , and D. , Maximum likelihood from incomplete data via the EM algorithm, J. of the Royal Statistical Society. Series B, vol.39, issue.1, pp.1-38, 1977.

A. Notsu, O. Komori, and S. Eguchi, Spontaneous Clustering via Minimum Gamma-Divergence, Neural Computation, vol.26, issue.2, pp.421-448, 2014.
DOI : 10.1162/08997660360581958

URL : http://arxiv.org/abs/1304.7867

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B (Methodological), vol.57, issue.1, pp.289-300, 1995.

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

N. Tustison, B. Avants, P. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855

S. Ourselin, A. Roche, S. Prima, and N. Ayache, Block Matching: A??General??Framework??to??Improve Robustness of??Rigid??Registration of Medical Images, MICCAI], pp.557-566, 2000.
DOI : 10.1007/978-3-540-40899-4_57

URL : https://hal.archives-ouvertes.fr/inria-00615860

O. Commowick, N. Wiest-daesslé, and S. Prima, Block-matching strategies for rigid registration of multimodal medical images, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.700-703, 2012.
DOI : 10.1109/ISBI.2012.6235644

URL : https://hal.archives-ouvertes.fr/inserm-00681610

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1002/hbm.10062

A. Guimond, J. Meunier, and J. And-thirion, Average Brain Models: A Convergence Study, Computer Vision and Image Understanding, vol.77, issue.2, pp.192-210, 2000.
DOI : 10.1006/cviu.1999.0815

URL : https://hal.archives-ouvertes.fr/inria-00615030

O. Commowick, N. Wiest-daessl, and S. Prima, Automated diffeomorphic registration of anatomical structures with rigid parts: Application to dynamic cervical MRI, " in [Medical Image Computing and Computer-Assisted Intervention (MICCAI'12, 2012.