Y. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant et al., Role of peptide hydrophobicity in the mechanism of action of a-helical antimicrobial peptides, Antimicrob. Agents Chemother, vol.51, pp.1398-1406, 2007.

R. J. Clark, H. Fischer, L. Dempster, N. L. Daly, K. J. Rosengren et al., Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII, Proc. Natl. Acad. Sci. USA, vol.102, pp.13767-13772, 2005.

M. Dathe, H. Nikolenko, J. Klose, and M. Bienert, Cyclization increases the antimicrobial activity and selectivity of arginine-and tryptophancontaining hexapeptides, Biochemistry, vol.43, pp.9140-9150, 2004.

N. Dong, Q. Ma, A. Shan, Y. Lv, W. Hu et al., Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine-and valine-rich b-hairpin-like antimicrobial peptides, Antimicrob. Agents Chemother, vol.56, pp.2994-3003, 2012.

E. M. Fozo, K. S. Makarova, S. A. Shabalina, N. Yutin, E. V. Koonin et al., Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families, Nucleic Acids Res, vol.38, pp.3743-3759, 2010.

S. Ghafourian, M. Raftari, N. Sadeghifard, and Z. Sekawi, Toxin-antitoxin systems: classification, biological function and application in biotechnology, Curr. Issues Mol. Biol, vol.16, pp.9-14, 2013.

S. M. Gupta, C. C. Aranha, J. R. Bellare, and K. V. Reddy, Interaction of contraceptive antimicrobial peptide nisin with target cell membranes: implications for use as vaginal microbicide, Contraception, vol.80, pp.299-307, 2009.

M. Hartmann, M. Berditsch, J. Hawecker, M. F. Ardakani, D. Gerthsen et al., Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy, Antimicrob. Agents Chemother, vol.54, pp.3132-3142, 2010.

M. Hassan, M. Kjos, I. F. Nes, D. B. Diep, and F. Lotfipour, Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance, J. Appl. Microbiol, vol.113, pp.723-736, 2012.

S. M. Howell, S. V. Fiacco, T. T. Takahashi, F. Jalali-yazdi, S. W. Millward et al., Serum stable natural peptides designed by mRNA display, 2014.

C. Junkes, R. D. Harvey, K. D. Bruce, R. Dolling, M. Bagheri et al., Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action, Eur. Biophys. J, vol.40, pp.515-528, 2011.

T. Katsu, C. Ninomiya, M. Kuroko, H. Kobayashi, T. Hirota et al., Action mechanism of amphipathic peptides gramicidin S and melittin on erythrocyte membrane, Biochim. Biophys. Acta, vol.939, pp.57-63, 1988.

M. Laurencin, O. Tasseau, and M. Baudy-floc'h, Asymmetric synthesis of suitably protected g-hydroxy-aza-b3-homothreonine building blocks, Tetrahedron Asym, vol.20, pp.1103-1105, 2009.

M. Laurencin, A. Mosbah, Y. Fleury, and M. Baudy-floc'h, De novo cyclic pseudopeptides containing aza-b3-amino acids exhibiting antimicrobial activities, J. Med. Chem, vol.24, pp.10885-10895, 2012.

B. Legrand, M. Laurencin, J. Sarkis, E. Duval, L. Mouret et al., Structure and mechanism of action of a de novo antimicrobial detergent-like peptide, Biochim. Biophys. Acta, vol.1808, pp.106-116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586809

A. K. Marr, W. J. Gooderham, and R. E. Hancock, Antibacterial peptides for therapeutic use: obstacles and realistic outlook, Curr. Opin. Pharmacol, vol.6, pp.468-472, 2006.

A. J. Mcbroom and M. J. Kuehn, Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response, Mol. Microbiol, vol.63, pp.545-558, 2007.

C. Mcinnes, L. H. Kondejewski, R. S. Hodges, and B. D. Sykes, , 2000.

, Development of the structural basis for antimicrobial and hemolytic activities of peptides based on gramicidin S and design of novel analogs using NMR spectroscopy, J. Biol. Chem, vol.19, pp.14287-14294

M. N. Melo, R. Ferre, and M. A. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations, Nat. Rev. Microbiol, vol.7, pp.245-250, 2009.

J. T. Mika, G. Moiset, A. D. Cirac, L. Feliu, E. Bardají et al., Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194, Biochim. Biophys. Acta, vol.1808, pp.2197-2205, 2011.

C. Neveu, B. Lefranc, O. Tasseau, J. Do-rego, A. Bourmaud et al., Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-b3-pseudopeptide agonist, J. Med. Chem, vol.55, pp.7516-7524, 2012.

L. T. Nguyen, J. K. Chau, N. A. Perry, L. De-boer, S. A. Zaat et al., Serum stabilities of short tryptophan-and arginine-rich antimicrobial peptide analogs, PLoS One, vol.5, p.12684, 2010.

M. Pinel-marie, R. Brielle, and B. Felden, Dual toxic-peptide-coding S aureus RNA under antisense regulation targets host cells and bacterial rivals unequally, Cell Rep, vol.7, pp.424-435, 2014.
DOI : 10.1016/j.celrep.2014.03.012

URL : https://doi.org/10.1016/j.celrep.2014.03.012

N. Sayed, A. Jousselin, and B. Felden, A cis-antisense RNA acts in trans in S aureus to control translation of a human cytolytic peptide, Nat. Struct. Mol. Biol, vol.19, pp.105-112, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00696345

N. Sayed, S. Nonin-lecomte, S. Rety, and B. Felden, Functional and structural insights of a S aureus apoptotic-like membrane peptide from a toxin-antitoxin module, J. Biol. Chem, vol.287, pp.43454-43463, 2012.

T. Schneider, A. Mü-ller, H. Miess, and H. Gross, Cyclic lipopeptides as antibacterial agents; potent antibiotic activity mediated by intriguing mode of actions, Int. J. Med. Microbiol, vol.304, issue.1, pp.37-43, 2014.

S. Sundriyal, R. K. Sharma, R. Jain, and P. V. Bharatam, Minimum requirements of hydrophobic and hydrophilic features in cationic peptide antibiotics (CPAs): pharmacophore generation and validation with cationic steroid antibiotics (CSAs), J. Mol. Model, vol.14, pp.265-278, 2008.

T. Tachi, R. F. Epand, R. M. Epand, and K. Matsuzaki, Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity, Biochemistry, vol.41, pp.10723-10731, 2002.

M. Vaara, Novel derivatives of polymyxins, J. Antimicrob. Chemother, vol.686, pp.1213-1219, 2013.

M. Wenzel, A. I. Chiriac, A. Otto, D. Zweytick, C. May et al., Small cationic antimicrobial peptides delocalize peripheral membrane proteins, Proc. Natl. Acad. Sci. USA, vol.111, pp.1409-1418, 2014.
DOI : 10.1073/pnas.1319900111

D. Wildes and J. A. Wells, Sampling the N-terminal proteome of human blood, Proc. Natl. Acad. Sci. USA, vol.107, pp.4561-4566, 2010.

M. Wilmes and H. Sahl, Defensin-based anti-infective strategies, Int. J. Med. Microbiol, vol.304, pp.93-99, 2014.
DOI : 10.1016/j.ijmm.2013.08.007

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, pp.389-395, 2002.
DOI : 10.1038/415389a