J. Boultwood, A. Pellagatti, A. Mckenzie, and J. Wainscoat, Advances in the 5q- syndrome, Blood, vol.116, issue.26, pp.5803-5811, 2010.
DOI : 10.1182/blood-2010-04-273771

F. Pendino, E. Nguyen, I. Jonassen, B. Dysvik, A. Azouz et al., Functional involvement of RINF, retinoid-inducible nuclear factor (CXXC5), in normal and tumoral human myelopoiesis, Blood, vol.113, issue.14, pp.3172-3181, 2009.
DOI : 10.1182/blood-2008-07-170035

H. Kim, D. Yang, S. Shin, M. Kim, J. Yoon et al., CXXC5 is a transcriptional activator of Flk-1 and mediates bone morphogenic protein-induced endothelial cell differentiation and vessel formation, The FASEB Journal, vol.28, issue.2, pp.615-626, 2014.
DOI : 10.1096/fj.13-236216

A. Astori, H. Fredly, T. Aloysius, L. Bullinger, V. Mansat-de-mas et al., CXXC5 (Retinoid-Inducible Nuclear Factor, RINF) is a Potential Therapeutic Target in High-Risk Human Acute Myeloid Leukemia, Oncotarget, vol.4, issue.9, pp.1438-1448, 2013.
DOI : 10.18632/oncotarget.1195

A. Kühnl, P. Valk, M. Sanders, R. Hills, K. Mills et al., Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia, Blood, vol.125, issue.19, p.52, 2013.
DOI : 10.1182/blood-2014-12-613703

O. Bruserud, R. Hovland, L. Wergeland, T. Huang, and B. Gjertsen, Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a functional characterization of Flt3-ligand effects in AML cell populations with and without genetic Flt3 abnormalities, Haematologica, vol.88, issue.4, pp.416-428, 2003.

B. Liu and N. Mao, Smad5: signaling roles in hematopoiesis and osteogenesis, The International Journal of Biochemistry & Cell Biology, vol.36, issue.5, pp.766-770, 2004.
DOI : 10.1016/S1357-2725(03)00250-4

K. Eppert, K. Takenaka, E. Lechman, L. Waldron, B. Nilsson et al., Stem cell gene expression programs influence clinical outcome in human leukemia, Nature Medicine, vol.2, issue.9, pp.1086-1093, 2011.
DOI : 10.1016/j.jim.2009.06.008

E. Diffner, D. Beck, E. Gudgin, J. Thoms, K. Knezevic et al., Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia, Blood, vol.121, issue.12, pp.2289-2300, 2013.
DOI : 10.1182/blood-2012-07-446120

N. Wilson, S. Foster, X. Wang, K. Knezevic, J. Schutte et al., Combinatorial Transcriptional Control In Blood Stem/Progenitor Cells: Genome-wide Analysis of Ten Major Transcriptional Regulators, Cell Stem Cell, vol.7, issue.4, pp.532-544, 2010.
DOI : 10.1016/j.stem.2010.07.016

D. Curtis, J. Salmon, and J. Pimanda, Concise Review: Blood Relatives: Formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1, STEM CELLS, vol.30, issue.6, pp.1053-1058, 2012.
DOI : 10.1002/stem.1093

R. Baer and . Tal1, TAL2 and LYL1: a family of basic helixloop-helix proteins implicated in T cell acute leukaemia, Semi Cancer Biol, vol.4, issue.6, pp.341-347, 1993.

O. Bruserud and E. Ulvestad, Effects of gamma-Irradiation on Acute Myelogenous Leukemia Blasts: In Vitro Studies of Proliferation, Constitutive Cytokine Secretion, and Accessory Cell Function During T Cell Activation, Journal of Hematotherapy & Stem Cell Research, vol.8, issue.4, pp.431-441, 1999.
DOI : 10.1089/152581699320199

O. Bruserud, B. Gjertsen, B. Foss, and T. Huang, New Strategies in the Treatment of Acute Myelogenous Leukemia (AML): In Vitro Culture of AML Cells-The Present Use in Experimental Studies and the Possible Importance for Future Therapeutic Approaches, Stem Cells, vol.49, issue.1, pp.1-11, 2001.
DOI : 10.1634/stemcells.19-1-1

H. Reikvam, A. Oyan, K. Kalland, R. Hovland, K. Hatfield et al., Differences in proliferative capacity of primary human acute myelogenous leukaemia cells are associated with altered gene expression profiles and can be used for subclassification of patients, Cell Proliferation, vol.115, issue.5, pp.554-562, 2013.
DOI : 10.1111/cpr.12057

E. Ersvaer, J. Skavland, E. Ulvestad, B. Gjertsen, and O. Bruserud, Effects of interferon gamma on native human acute myelogenous leukaemia cells, Cancer Immunology, Immunotherapy, vol.172, issue.1, pp.13-24, 2007.
DOI : 10.1007/s00262-006-0159-1

A. Dale, O. Bruserud, G. Nolan, and B. Gjertsen, Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53, Blood, vol.109, issue.6, pp.2589-2596, 2007.

M. Salem, R. Delwel, I. Touw, L. Mahmoud, and B. Lowenberg, Human AML colony growth in serum-free culture, Leukemia Research, vol.12, issue.2, pp.157-165, 1988.
DOI : 10.1016/0145-2126(88)90076-8

O. Bruserud, S. Frostad, and B. Foss, In Vitro Culture of Acute Myelogenous Leukemia Blasts: A Comparison of Four Different Culture Media, Journal of Hematotherapy, vol.8, issue.1, pp.63-73, 1999.
DOI : 10.1089/106161299320587

J. Bayascas, PDK1: The Major Transducer of PI 3-Kinase Actions, Cur Topic Microbiol Immunol, vol.346, pp.9-29, 2010.
DOI : 10.1007/82_2010_43

S. Byeon, Y. Yi, J. Oh, B. Yoo, S. Hong et al., The Role of Src Kinase in Macrophage-Mediated Inflammatory Responses, Mediators of Inflammation, vol.26, issue.4, p.512926, 2012.
DOI : 10.1073/pnas.0806117106

B. Magnuson, B. Ekim, and D. Fingar, Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks, Biochemical Journal, vol.460, issue.1, pp.1-21, 2012.
DOI : 10.1016/j.febslet.2010.01.017

E. Cho, B. Mitton, K. Sakamoto, . Creb, and . Leukemogenesis, CREB and Leukemogenesis, Critical Reviews??? in Oncogenesis, vol.16, issue.1-2, pp.37-46, 2011.
DOI : 10.1615/CritRevOncog.v16.i1-2.50

R. Fagard, V. Metelev, I. Souissi, and F. Baran-marszak, STAT3 inhibitors for cancer therapy, JAK-STAT, vol.14, issue.1, p.22882, 2013.
DOI : 10.1074/jbc.270.8.3974

F. Oeztuerk-winder and J. Ventura, The many faces of p38 mitogen-activated protein kinase in progenitor/stem cell differentiation, Biochemical Journal, vol.14, issue.1, pp.1-10, 2012.
DOI : 10.1007/s12032-008-9039-1

Ø. Bruserud, IL-4, IL-10 and IL-13 in acute myelogenous leukemia, Cytokines Cell Mol Ther, vol.4, issue.3, pp.187-198, 1998.

O. Bruserud, Effects of interleukin-13 on cytokine secretion by human acute myelogenous leukemia blasts, Leukemia, vol.10, issue.9, pp.1497-1503, 1996.

H. Bruns and M. Kaplan, The role of constitutively active Stat6 in leukemia and lymphoma, Critical Reviews in Oncology/Hematology, vol.57, issue.3, pp.245-253, 2006.
DOI : 10.1016/j.critrevonc.2005.08.005

D. Hebenstreit, G. Wirnsberger, J. Horejs-hoeck, and A. Duschl, Signaling mechanisms, interaction partners, and target genes of STAT6, Cytokine & Growth Factor Reviews, vol.17, issue.3, pp.173-188, 2006.
DOI : 10.1016/j.cytogfr.2006.01.004

D. Luca, A. Maiello, M. , D. 'alessio, A. Pergameno et al., The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches, Expert Opinion on Therapeutic Targets, vol.28, issue.15, pp.17-27, 2012.
DOI : 10.1158/0008-5472.CAN-10-0409

H. Kawamata, T. Fujimori, and Y. Imai, TSC-22 (TGF-β Stimulated Clone-22): A Novel Molecular Target for Differentiation-Inducing Therapy in Salivary Gland Cancer, Current Cancer Drug Targets, vol.4, issue.6, pp.521-529, 2004.
DOI : 10.2174/1568009043332844

Y. Lu, J. Kitaura, T. Oki, Y. Komeno, K. Ozaki et al., Identification of TSC-22 as a potential tumor suppressor that is upregulated by Flt3-D835V but not Flt3-ITD, Leukemia, vol.105, issue.11, pp.2246-2257, 2007.
DOI : 10.1038/sj.leu.2404883

S. Hino, H. Kawamata, F. Omotehara, D. Uchida, Y. Miwa et al., Cytoplasmic TSC-22 (Transforming Growth Factor-??-Stimulated Clone-22) Markedly Enhances the Radiation Sensitivity of Salivary Gland Cancer Cells, Biochemical and Biophysical Research Communications, vol.292, issue.4, pp.957-963, 2002.
DOI : 10.1006/bbrc.2002.6776

R. Burk and K. Hill, Selenoprotein P???Expression, functions, and roles in mammals, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.11, pp.1441-1447, 2009.
DOI : 10.1016/j.bbagen.2009.03.026

H. Zeng, Selenium as an Essential Micronutrient: Roles in Cell Cycle and Apoptosis, Molecules, vol.14, issue.3, pp.1263-1278, 2009.
DOI : 10.3390/molecules14031263

S. Schwartz, A. Heinecke, M. Zimmermann, U. Creutzig, C. Schoch et al., Expression of the C-Kit Receptor (CD117) is a Feature of Almost All Subtypes of De Novo Acute Myeloblastic Leukemia (AML), Including Cytogenetically Good-Risk AML, and Lacks Prognostic Significance, Leukemia & Lymphoma, vol.15, issue.1-2, pp.85-94, 1999.
DOI : 10.1056/NEJM199303043280904

P. Kümpers, C. Koenecke, H. Hecker, J. Hellpap, R. Horn et al., Angiopoietin-2 predicts disease-free survival after allogeneic stem cell transplantation in patients with high-risk myeloid malignancies, Blood, vol.112, issue.5, pp.2139-2148, 2008.
DOI : 10.1182/blood-2007-12-130021

C. Lee, H. Tien, C. Hu, W. Chou, and L. Lin, Marrow angiogenesis-associated factors as prognostic biomarkers in patients with acute myelogenous leukaemia, British Journal of Cancer, vol.94, issue.7, pp.877-882, 2007.
DOI : 10.1006/scdb.2001.0288

C. Schliemann, R. Bieker, N. Thoennissen, J. Gerss, R. Liersch et al., Circulating angiopoietin-2 is a strong prognostic factor in acute myeloid leukemia, Leukemia, vol.93, issue.9, pp.1901-1906, 2007.
DOI : 10.1016/j.ccr.2004.09.030

J. Radich, H. Dai, M. Mao, V. Oehler, J. Schelter et al., Gene expression changes associated with progression and response in chronic myeloid leukemia, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2794-2799, 2006.
DOI : 10.1073/pnas.0510423103

L. Steelman, S. Abrams, J. Whelan, F. Bertrand, D. Ludwig et al., Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia, Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/ mTOR and Jak/STAT pathways to leukemia, pp.686-707, 2008.
DOI : 10.1038/sj.leu.2404358

I. Hers, E. Vincent, and J. Tavare, Akt signalling in health and disease, Cellular Signalling, vol.23, issue.10, pp.1515-1527, 2011.
DOI : 10.1016/j.cellsig.2011.05.004

M. Benekli, Z. Xia, K. Donohue, L. Ford, L. Pixley et al., Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival, Blood, vol.99, issue.1, pp.252-257, 2002.
DOI : 10.1182/blood.V99.1.252

H. Reikvam, J. Tamburini, S. Skrede, R. Holdhus, L. Poulain et al., Antileukaemic effect of PI3K-mTOR inhibitors in acute myeloid leukaemia-gene expression profiles reveal CDC25B expression as determinate of pharmacological effect, British Journal of Haematology, vol.12, issue.2, pp.200-211, 2014.
DOI : 10.1111/bjh.12611

A. Hutchins, D. Diez, M. , and D. , Genomic and computational approaches to dissect the mechanisms of STAT3???s universal and cell type-specific functions, JAK-STAT, vol.47, issue.4, p.25097, 2013.
DOI : 10.1016/j.cell.2012.11.022

O. Bruserud, I. Nepstad, M. Hauge, K. Hatfield, and H. Reikvam, STAT3 as a possible therapeutic target in human malignancies: lessons from acute myeloid leukemia, Expert Review of Hematology, vol.8, issue.1, pp.1-13, 2014.
DOI : 10.1586/17474086.2015.971005

J. Marvin, S. Swaminathan, G. Kraker, A. Chadburn, J. Jacobberger et al., Normal bone marrow signal-transduction profiles: a requisite for enhanced detection of signaling dysregulations in AML, Blood, vol.117, issue.15, pp.120-130, 2011.
DOI : 10.1182/blood-2010-10-316026

M. Redell, M. Ruiz, T. Alonzo, R. Gerbing, and D. Tweardy, Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor, Blood, vol.117, issue.21, pp.5701-5709, 2011.
DOI : 10.1182/blood-2010-04-280123

T. Mandal, A. Bhowmik, A. Chatterjee, U. Chatterjee, S. Chatterjee et al., Reduced phosphorylation of Stat3 at Ser-727 mediated by casein kinase 2 ??? Protein phosphatase 2A enhances Stat3 Tyr-705 induced tumorigenic potential of glioma cells, Cellular Signalling, vol.26, issue.8, pp.1725-1734, 2014.
DOI : 10.1016/j.cellsig.2014.04.003

G. Huang, H. Yan, S. Ye, C. Tong, and Y. Ql, STAT3 Phosphorylation at Tyrosine 705 and Serine 727 Differentially Regulates Mouse ESC Fates, STEM CELLS, vol.25, issue.5, pp.1149-1160, 2014.
DOI : 10.1002/stem.1609

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181708

M. Miyakoshi, M. Yamamoto, H. Tanaka, and K. Ogawa, Serine 727 phosphorylation of STAT3: an early change in mouse hepatocarcinogenesis induced by neonatal treatment with diethylnitrosamine. Molec Carcinogen, pp.67-76, 2014.

R. Wakahara, H. Kunimoto, K. Tanino, H. Kojima, A. Inoue et al., Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45, Genes to Cells, vol.325, issue.2, pp.132-145, 2012.
DOI : 10.1111/j.1365-2443.2011.01575.x

T. Nosaka, T. Kawashima, K. Misawa, K. Ikuta, A. Mui et al., STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells, The EMBO Journal, vol.18, issue.17, pp.4754-4765, 1999.
DOI : 10.1093/emboj/18.17.4754

J. Mccubrey, L. Steelman, W. Chappell, S. Abrams, R. Franklin et al., Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance, Oncotarget, vol.3, issue.10, pp.1068-1111, 2012.
DOI : 10.18632/oncotarget.659