J. Furness, The enteric nervous system and neurogastroenterology, Nature Reviews Gastroenterology & Hepatology, vol.394, issue.5, pp.286-294
DOI : 10.1016/0306-4522(83)90056-8

K. Sharkey and T. Savidge, Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract, Autonomic Neuroscience, vol.181, pp.94-106, 2014.
DOI : 10.1016/j.autneu.2013.12.006

A. Lomax, E. Fernandez, and K. Sharkey, Plasticity of the enteric nervous system during intestinal inflammation, Neurogastroenterology and Motility, vol.7, issue.1, pp.4-15, 2005.
DOI : 10.1046/j.1365-2982.2001.00245.x

K. Margolis, K. Stevanovic, N. Karamooz, Z. Li, A. Ahuja et al., Enteric Neuronal Density Contributes to the Severity of Intestinal Inflammation, Gastroenterology, vol.141, issue.2, pp.588-598, 2011.
DOI : 10.1053/j.gastro.2011.04.047

K. Geboes and S. Collins, Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis, Neurogastroenterology and Motility, vol.36, issue.3, pp.189-202, 1998.
DOI : 10.1016/S0140-6736(95)90013-6

A. Lomax, D. Linden, G. Mawe, and K. Sharkey, Effects of gastrointestinal inflammation on enteroendocrine cells and enteric neural reflex circuits, Autonomic Neuroscience, vol.126, issue.127
DOI : 10.1016/j.autneu.2006.02.015

C. Rumio, D. Besusso, F. Arnaboldi, M. Palazzo, S. Selleri et al., Activation of smooth muscle and myenteric plexus cells of jejunum via toll-like receptor 4, Journal of Cellular Physiology, vol.59, issue.3, pp.47-54, 2006.
DOI : 10.1002/jcp.20632

M. Anitha, M. Vijay-kumar, S. Sitaraman, A. Gewirtz, and S. Srinivasan, Gut Microbial Products Regulate Murine Gastrointestinal Motility via Toll-Like Receptor 4 Signaling, Gastroenterology, vol.143, issue.4, pp.1006-1016, 2012.
DOI : 10.1053/j.gastro.2012.06.034

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458182

I. Barajon, G. Serrao, F. Arnaboldi, E. Opizzi, G. Ripamonti et al., Toll-like Receptors 3, 4, and 7 Are Expressed in the Enteric Nervous System and Dorsal Root Ganglia, Journal of Histochemistry & Cytochemistry, vol.127, issue.2, pp.1013-1023, 2009.
DOI : 10.1093/jb/mvm032

G. Esposito, C. Cirillo, G. Sarnelli, D. Filippis, D. et al., Enteric Glial-Derived S100B Protein Stimulates Nitric Oxide Production in Celiac Disease, Gastroenterology, vol.133, issue.3, pp.918-925, 2007.
DOI : 10.1053/j.gastro.2007.06.009

F. Turco, G. Sarnelli, C. Cirillo, I. Palumbo, D. Giorgi et al., Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells, Gut, vol.123, issue.1, pp.105-115, 2014.
DOI : 10.1136/gutjnl-2012-302090

G. Esposito, E. Capoccia, F. Turco, I. Palumbo, J. Lu et al., Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-?? activation, Gut, vol.384, issue.8, pp.1300-1112, 2014.
DOI : 10.1136/gutjnl-2013-305005

P. Brun, M. Giron, M. Qesari, A. Porzionato, V. Caputi et al., Toll-Like Receptor 2 Regulates Intestinal Inflammation by Controlling Integrity of the Enteric Nervous System, Gastroenterology, vol.145, issue.6, pp.1323-1333, 2013.
DOI : 10.1053/j.gastro.2013.08.047

J. Chevalier, P. Derkinderen, P. Gomes, R. Thinard, P. Naveilhan et al., Activity-dependent regulation of tyrosine hydroxylase expression in the enteric nervous system, The Journal of Physiology, vol.570, issue.Suppl. 1, 1963.
DOI : 10.1113/jphysiol.2007.149815

URL : https://hal.archives-ouvertes.fr/inserm-00259526

R. Soret, S. Coquenlorge, F. Cossais, G. Meurette, M. Rolli-derkinderen et al., Characterization of human, mouse, and rat cultures of enteric glial cells and their effect on intestinal epithelial cells, Neurogastroenterology & Motility, vol.20, issue.Suppl. 1, pp.755-764, 2013.
DOI : 10.1111/nmo.12200

K. Bach-ngohou, M. Mahe, P. Aubert, H. Abdo, S. Boni et al., -prostaglandin J2, The Journal of Physiology, vol.272, issue.69, pp.2533-2544, 2010.
DOI : 10.1113/jphysiol.2010.188409

URL : https://hal.archives-ouvertes.fr/inserm-00462176

L. Reinstein, S. Lichtman, R. Currin, J. Wang, R. Thurman et al., Suppression of lipopolysaccharide-stimulated release of tumor necrosis factor by adenosine: evidence for A2 receptors on rat Kupffer cells, Hepatology, vol.19, pp.1445-1452, 1994.

B. Kucher and J. Neary, Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes, Journal of Neurochemistry, vol.145, issue.3, pp.525-535, 2005.
DOI : 10.1083/jcb.112.2.279

J. Galligan and P. Bertrand, ATP mediates fast synaptic potentials in enteric neurons, J Neurosci, vol.14, pp.7563-7571, 1994.

N. Horwood, T. Page, J. Mcdaid, C. Palmer, J. Campbell et al., Bruton's Tyrosine Kinase Is Required for TLR2 and TLR4-Induced TNF, but Not IL-6, Production, The Journal of Immunology, vol.176, issue.6, pp.3635-3641, 2006.
DOI : 10.4049/jimmunol.176.6.3635

J. Lefort, M. Singer, D. Leduc, P. Renesto, M. Nahori et al., Systemic administration of endotoxin induces bronchopulmonary hyperreactivity dissociated from TNF-alpha formation and neutrophil sequestration into the murine lungs, J Immunol, vol.161, pp.474-480, 1998.

A. Szkaradkiewicz, R. Marciniak, I. Chudzicka-strugala, A. Wasilewska, M. Drews et al., Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients, Archivum Immunologiae et Therapiae Experimentalis, vol.116, issue.4, pp.291-294, 2009.
DOI : 10.1007/s00005-009-0031-z

URL : http://dx.doi.org/10.1007/s00005-009-0031-z

M. Lodoen and L. Lanier, Natural killer cells as an initial defense against pathogens, Current Opinion in Immunology, vol.18, issue.4, pp.391-398, 2006.
DOI : 10.1016/j.coi.2006.05.002

H. Jung, L. Eckmann, S. Yang, A. Panja, J. Fierer et al., A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion., Journal of Clinical Investigation, vol.95, issue.1, pp.55-65, 1995.
DOI : 10.1172/JCI117676

C. Ogle, X. Guo, P. Hasselgren, J. Ogle, and J. Alexander, The gut as a source of inflammatory cytokines after stimulation with endotoxin

E. Tixier, F. Lalanne, I. Just, J. Galmiche, and M. Neunlist, Human mucosa/submucosa interactions during intestinal inflammation: involvement of the enteric nervous system in interleukin-8 secretion, Cellular Microbiology, vol.103, issue.12, pp.1798-1810, 2005.
DOI : 10.1016/0165-1838(94)90156-2

L. Gahring, N. Carlson, R. Kulmar, and S. Rogers, Neuronal Expression of Tumor Necrosis Factor Alpha in the OVOUJI fme Brain, Neuroimmunomodulation, vol.3, issue.5, pp.289-303, 1996.
DOI : 10.1159/000097283

A. Renauld and R. Spengler, Tumor necrosis factor expressed by primary hippocampal neurons and SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation, J Neurosci Res, vol.67111, p.202, 2002.

W. Sheng, S. Hu, X. Min, G. Cabral, J. Lokensgard et al., Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1?-stimulated human astrocytes, Glia, vol.121, issue.2, pp.211-219, 2005.
DOI : 10.1002/glia.20108

J. Swantek, M. Cobb, and T. Geppert, Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK., Molecular and Cellular Biology, vol.17, issue.11, pp.6274-6282, 1997.
DOI : 10.1128/MCB.17.11.6274

K. Meldrum, D. Meldrum, K. Hile, E. Yerkes, A. Ayala et al., MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia, Am J Physiol Cell Physiol, vol.281, pp.38-563, 2001.

L. Hoareau, K. Bencharif, P. Rondeau, R. Murumalla, P. Ravanan et al., Signaling pathways involved in LPS induced TNFalpha production in human adipocytes, Journal of Inflammation, vol.7, issue.1, 2010.
DOI : 10.1186/1476-9255-7-1

URL : https://hal.archives-ouvertes.fr/hal-01198340

A. Kotlyarov, A. Neininger, C. Schubert, R. Eckert, C. Birchmeier et al., MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis, Nat Cell Biol, vol.1, pp.94-97, 1999.

P. Gais, C. Tiedje, F. Altmayr, M. Gaestel, H. Weighardt et al., TRIF Signaling Stimulates Translation of TNF-?? mRNA via Prolonged Activation of MK2, The Journal of Immunology, vol.184, issue.10, pp.5842-5848, 2010.
DOI : 10.4049/jimmunol.0902456

J. Cacicedo, N. Yagihashi, J. Keaney, . Jr, N. Ruderman et al., AMPK inhibits fatty acid-induced increases in NF-??B transactivation in cultured human umbilical vein endothelial cells, Biochemical and Biophysical Research Communications, vol.324, issue.4, pp.1204-1209, 2004.
DOI : 10.1016/j.bbrc.2004.09.177

S. Giri, N. Nath, B. Smith, B. Viollet, and A. Singh, 5-Aminoimidazole-4-Carboxamide-1-??-4-Ribofuranoside Inhibits Proinflammatory Response in Glial Cells: A Possible Role of AMP-Activated Protein Kinase, Journal of Neuroscience, vol.24, issue.2, pp.479-487, 2004.
DOI : 10.1523/JNEUROSCI.4288-03.2004

D. Sag, D. Carling, R. Stout, and J. Suttles, Adenosine 5'-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype, The Journal of Immunology, vol.181, issue.12, pp.8633-8641, 2008.
DOI : 10.4049/jimmunol.181.12.8633

G. Meares, H. Qin, Y. Liu, A. Holdbrooks, and E. Benveniste, AMP-Activated Protein Kinase Restricts IFN-?? Signaling, The Journal of Immunology, vol.190, issue.1, pp.372-380, 2010.
DOI : 10.4049/jimmunol.1202390

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3735359

S. Galic, M. Fullerton, J. Schertzer, S. Sikkema, K. Marcinko et al., Hematopoietic AMPK ??1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity, Journal of Clinical Investigation, vol.121, issue.12, pp.4903-4915, 2011.
DOI : 10.1172/JCI58577DS1

K. Labuzek, S. Liber, B. Gabryel, L. Buldak, and B. Okopien, Ambivalent effects of compound C (dorsomorphin) on inflammatory response in LPS-stimulated rat primary microglial cultures, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.108, issue.1, pp.41-57, 2010.
DOI : 10.1007/s00210-009-0472-2

S. Paillusson, M. Tasselli, T. Lebouvier, M. Mahe, C. J. Biraud et al., ??-Synuclein expression is induced by depolarization and cyclic AMP in enteric neurons, Journal of Neurochemistry, vol.161, issue.127, pp.694-706, 2010.
DOI : 10.1111/j.1471-4159.2010.06962.x

K. Hoebe, X. Du, P. Georgel, E. Janssen, K. Tabeta et al., Identification of Lps2 as a key transducer of MyD88-independent TIR signalling, Nature, vol.424, issue.6950, pp.743-748, 2003.
DOI : 10.1038/nature01889

H. Hu, N. Gao, Z. Lin, C. Gao, S. Liu et al., P2X7 receptors in the enteric nervous system of guinea-pig small intestine, The Journal of Comparative Neurology, vol.613, issue.3, pp.2-299, 2001.
DOI : 10.1002/cne.1387

K. Palombit, C. Mendes, W. Tavares-de-lima, M. Silveira, and P. Castelucci, Effects of Ischemia and Reperfusion on Subpopulations of Rat Enteric Neurons Expressing the P2X7 Receptor, Digestive Diseases and Sciences, vol.126, issue.12, pp.3429-3439, 2013.
DOI : 10.1007/s10620-013-2847-y

B. Gulbransen and K. Sharkey, Novel functional roles for enteric glia in the gastrointestinal tract, Nature Reviews Gastroenterology & Hepatology, vol.278, issue.11, pp.625-632
DOI : 10.1038/nrgastro.2012.138

H. Schmitz, M. Fromm, C. Bentzel, P. Scholz, K. Detjen et al., Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6, J Cell Sci, pp.112137-146, 1999.

M. Bruewer, A. Luegering, T. Kucharzik, C. Parkos, J. Madara et al., Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms, The Journal of Immunology, vol.171, issue.11, pp.6164-6172, 2003.
DOI : 10.4049/jimmunol.171.11.6164

F. Wang, W. Graham, Y. Wang, E. Witkowski, B. Schwarz et al., Interferon-?? and Tumor Necrosis Factor-?? Synergize to Induce Intestinal Epithelial Barrier Dysfunction by Up-Regulating Myosin Light Chain Kinase Expression, The American Journal of Pathology, vol.166, issue.2, pp.409-419, 2005.
DOI : 10.1016/S0002-9440(10)62264-X

R. Al-sadi, D. Ye, K. Dokladny, and T. Ma, Mechanism of IL-1??-Induced Increase in Intestinal Epithelial Tight Junction Permeability, The Journal of Immunology, vol.180, issue.8, pp.5653-5661, 2008.
DOI : 10.4049/jimmunol.180.8.5653

C. Weber, D. Raleigh, L. Su, L. Shen, E. Sullivan et al., Epithelial Myosin Light Chain Kinase Activation Induces Mucosal Interleukin-13 Expression to Alter Tight Junction Ion Selectivity, Journal of Biological Chemistry, vol.285, issue.16, pp.12037-12046, 2013.
DOI : 10.1074/jbc.M109.064808

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852941

S. Hurst and S. Collins, Mechanism underlying tumor necrosis factor-alpha suppression of norepinephrine release from rat myenteric plexus, Am J Physiol, vol.266, pp.1123-1129, 1994.

M. Rehn, T. Hubschle, and M. Diener, TNF-alpha hyperpolarizes membrane potential and potentiates the response to nicotinic receptor stimulation in cultured rat myenteric neurones, Acta Physiologica Scandinavica, vol.34, issue.1, pp.13-22, 2004.
DOI : 10.1146/annurev.pharmtox.38.1.97

P. Gougeon, S. Lourenssen, T. Han, D. Nair, M. Ropeleski et al., The Pro-Inflammatory Cytokines IL-1?? and TNF?? Are Neurotrophic for Enteric Neurons, Journal of Neuroscience, vol.33, issue.8, pp.3339-3351, 2013.
DOI : 10.1523/JNEUROSCI.3564-12.2013

G. Von-boyen, M. Steinkamp, M. Reinshagen, K. Schafer, G. Adler et al., Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia, Gut, vol.53, issue.2, pp.222-228, 2004.
DOI : 10.1136/gut.2003.012625

Y. Xia, H. Hu, S. Liu, J. Ren, D. Zafirov et al., IL-1?? and IL-6 excite neurons and suppress nicotinic and noradrenergic neurotransmission in guinea pig enteric nervous system, Journal of Clinical Investigation, vol.103, issue.9, pp.1309-1316, 1999.
DOI : 10.1172/JCI5823

A. Kelles, J. Janssens, and J. Tack, IL-1beta and IL-6 excite neurones and suppress cholinergic neurotransmission in the myenteric plexus of the guinea pig, Neurogastroenterology and Motility, vol.39, issue.6, pp.531-538, 2000.
DOI : 10.1016/0006-8993(91)91330-4

O. Malley, D. Liston, M. Hyland, N. Dinan, T. Cryan et al., Colonic soluble mediators from the maternal separation model of irritable bowel syndrome activate submucosal neurons via an interleukin-6-dependent mechanism, AJP: Gastrointestinal and Liver Physiology, vol.300, issue.2, pp.241-252, 2010.
DOI : 10.1152/ajpgi.00385.2010

E. Sand, A. Themner-persson, and E. Ekblad, Mast cells reduce survival of myenteric neurons in culture, Neuropharmacology, vol.56, issue.2, pp.522-530, 2009.
DOI : 10.1016/j.neuropharm.2008.10.007

B. Khan, S. Parthasarathy, R. Alexander, and R. Medford, Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells., Journal of Clinical Investigation, vol.95, issue.3, pp.1262-1270, 1995.
DOI : 10.1172/JCI117776

A. Ruhl, S. Franzke, S. Collins, and W. Stremmel, Interleukin-6 expression and regulation in rat enteric glial cells, Am J Physiol Gastrointest Liver Physiol, vol.280, pp.1163-1171, 2001.

E. Faure, L. Thomas, H. Xu, A. Medvedev, O. Equils et al., Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation, J Immunol, vol.166, 2001.

N. Esen, F. Tanga, J. Deleo, and T. Kielian, Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus, Journal of Neurochemistry, vol.163, issue.3, pp.746-758, 2004.
DOI : 10.1046/j.1471-4159.2003.02202.x

C. Freria, L. Velloso, and A. Oliveira, Opposing effects of Toll-like receptors 2 and 4 on synaptic stability in the spinal cord after peripheral nerve injury, Journal of Neuroinflammation, vol.9, issue.7, p.240, 2012.
DOI : 10.1186/1742-2094-9-240

A. Hart, H. Hassi, R. Rigby, S. Bell, A. Emmanuel et al., Characteristics of Intestinal Dendritic Cells in Inflammatory Bowel Diseases, Gastroenterology, vol.129, issue.1, pp.50-65, 2005.
DOI : 10.1053/j.gastro.2005.05.013

C. Baudry, F. Reichardt, J. Marchix, A. Bado, M. Schemann et al., Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor, The Journal of Physiology, vol.222, issue.3, pp.533-544, 2012.
DOI : 10.1113/jphysiol.2011.219717

D. Rodrigues, A. Li, D. Nair, and M. Blennerhassett, Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system, Neurogastroenterology & Motility, vol.262, issue.2, pp.44-56, 2011.
DOI : 10.1111/j.1365-2982.2010.01626.x