Prevalence and significance of rare RYR2 variants in arrhythmogenic right ventricular cardiomyopathy/dysplasia: results of a systematic screening.

To cite this version:

HAL Id: inserm-01120324
https://www.hal.inserm.fr/inserm-01120324
Submitted on 25 Feb 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Arrhythmogenic right ventricular Cardiomyopathy/Dysplasia (ARVC/D) is a genetic disease predominantly caused by desmosomal gene mutations that account for only ~50% of cases. RYR2 gene mutations usually cause Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) but have been associated with peculiar phenotype named ARVC2.

Objectives
We aim to determine the prevalence and phenotype associated with RYR2 mutations in a large ARVC/D population.

Methods
We analyzed the whole RYR2 coding sequence by Sanger sequencing in 64 ARVC/D probands without desmosomal gene mutations.

Results
We have identified six rare missense variants p.P1583S, p.A2213S, p.G2367R, p.Y2932H, p.V3219M and p.L4670V. It corresponds to a prevalence of 9% of rare RYR2 variants in ARVC/D population (6 probands/64) that is significantly higher than the estimated rate of rare RYR2 variants in control (Fisher test, p=0.03). Phenotypes associated with RYR2 variants were similar to desmosome-related ARVC/D, associating typical ECG abnormalities at rest, frequent monomorphic ventricular tachycardia, right ventricular dilatation, wall motion abnormalities and fibro-fatty replacement when histopathological examination was available.

Conclusion
In this first systematic screening of the whole coding region of the RYR2 gene in a large ARVC/D cohort without mutation in desmosomal genes, we show that putative RYR2 mutations are frequent (9% of
ARVC/D probands) and are associated with a conventional phenotype of ARVC/D, in contrast with previous findings. The results support the role of RYR2 gene in conventional ARVC/D.
CONFLICT OF INTEREST STATEMENT - HeartRhythm
(First and Corresponding Author(s) Must Sign)

Thank you for your submission to the HeartRhythm journal. CONFLICTS OF INTEREST FOR ALL AUTHORS MUST BE STATED ON THE TITLE PAGE. Please have the first and corresponding author(s) sign and upload with your manuscript submission. Its purpose is to inform all interested parties of any significant affiliations or relationships you may have with any commercial enterprise or any other potential conflicts of interest. This is a standard form required by most leading journals.

1. Were you loaned any equipment, materials or medication for this study?
 Yes ___ No X Explain __

2. Were you given any equipment, materials or medication for this study?
 Yes ___ No X Explain __

3. Did you receive any funding to support your research for this article?
 Yes X No Explain This work was supported by institutional grants from Assistance Publique—Hôpitaux de Paris [PHRC programme hospitalier de recherche clinique AOM05073].

4. Were you provided with any honoraria, payment or other compensation for your work on this study?
 Yes ___ No X Explain __

5. Did you receive any stock options, stock ownership or other valuable materials in conjunction with this study from any source whatsoever?
 Yes ___ No X Explain __

6. Did you receive any outside financial support for travel or lectures to present the information covered in this study?
 Yes ___ No X Explain __

7. Do you have any financial relationship with any entity that may closely compete with the medications, materials or instruments covered by your study?
 Yes ___ No X Explain __

8. Do you own or have you applied for any patents in conjunction with the instruments, medications or materials discussed in this study?
 Yes ___ No X Explain __

9. Do you receive any compensation for any therapy discussed in your article?
 Yes ___ No X Explain __

10. Does anyone in your immediate family have a conflict of interest that would be covered by any of the above questions? (This would include closely held family trusts, limited liability corporations, etc.)
 Yes ___ No X Explain __

If you have any doubts about the nature of your conflict, please contact Douglas P. Zipes M.D., Editor-in-Chief.

Manuscript Number or Title: SIGNIFICANCE OF RYR2 MUTATIONS IN ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPAHY/DYSPLASIA: A SYSTEMATIC SCREENING

Signed:/Date 2013/11/15

Conflict of Interest Form
CONFLICT OF INTEREST STATEMENT - HeartRhythm
(First and Corresponding Author(s) Must Sign)

Print Name: Roux-Buisson
Dear Editor,

Please find enclosed our revised manuscript entitled "PREVALENCE AND SIGNIFICANCE OF RARE RYR2 VARIANTS IN ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY/DYSPLASIA: RESULTS OF A SYSTEMATIC SCREENING " by Roux-Buisson et al., which we submit for publication in Heart Rhythm as an original article.

I would like to thank the reviewers for their constructive comments. I added a “clinical perspectives” paragraph as requested. You will find below a detailed answer to the reviewer’s comments and also the revised manuscript. I hope the reviewers and yourself will find this new manuscript to your satisfaction.

Thank you in advance for the consideration given to our work.

Yours sincerely,

Philippe Charron, MD, PhD, Assoc. Prof.
Reviewer #1:

We thank the reviewer for his/her comments.

- The stated P value of 0.003 by Fisher is important and should also appear in the abstract.

 Answer: We modified the manuscript as recommended by the reviewer:
 Abstract, page 4, lines 17-18
 “It corresponds to a prevalence of 9% of rare RYR2 variants in ARVC/D population (6 probands/64) that is significantly higher than the estimated rate of rare RYR2 variants in control (Fisher test, p=0.03).”

- In the abstract, the comment: "not overlapping with CPVT" is an overstatement and should be removed.

 Answer: We modified the manuscript as recommended by the reviewer:
 Abstract, page 5, line 5
 “In this first systematic screening of the whole coding region of the RYR2 gene in a large ARVC/D cohort without mutation in desmosomal genes, we show that putative RYR2 mutations are frequent (9% of ARVC/D probands) and are associated with a conventional phenotype of ARVC/D, in contrast with previous findings.”

- The limitations section should include the fact that the authors limited their analysis to the 1994 Task Force criteria, and indicate why.

 Answer: The reviewer is right. We modified the manuscript as suggested:
 Abstract, page 18, lines 13-14
 “At last, the ARVC/D probands were selected according to the 1994 Task Force Criteria as this cohort was prospectively recruited before the publication of the revised TFC.”
Reviewer #2:

We thank the reviewer for his/her comments.

The questions raised were adequately addressed.

➢ Probably slightly modify the title: Prevalence ...: results of a systematic screening

 We modified the title as follow: “PREVALENCE AND SIGNIFICANCE OF RARE RYR2 VARIANTS IN ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY/DYSPLASIA: RESULTS OF A SYSTEMATIC SCREENING”
Title: PREVALENCE AND SIGNIFICANCE OF RARE RYR2 VARIANTS IN ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY/DYSPLASIA: RESULTS OF A SYSTEMATIC SCREENING

Short title: RYR2 mutations in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia

Authors: Nathalie Roux-Buisson, MD, PhD1,2,3§, Estelle Gandjbakhch, MD, PhD4,5§, Erwan Donal, MD, PhD6, Vincent Probst, MD, PhD7, Jean-Claude Deharo, MD8, Philippe Chevalier, MD, PhD9, Didier Klug, MD10, Nicolas Mansencal, MD, PhD11, Etienne Delacretaz, MD, PhD12, Pierre Cosnay, MD13, Patrice Scanu, MD14, Fabrice Extramiana, MD, PhD15, Dagmar Keller, MD16, Françoise Hidden-Lucet, MD4,5, Jonathan Trapani2, Pierre Fouret, MD, PhD4,17, Robert Frank, MD5, Veronique Fressart, MD, PhD5,18, Julien Fauré, PhD1,2,3, Joel Lunardi, PharmD, PhD1,2,3 and Philippe Charron, MD, PhD4,5,11*

The number of authors is justified by the fact that this manuscript results from a multicenter study, and there is one author from each center.

Affiliations:

1INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble, France,
2CHRU de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble, France,
3Université Joseph Fourier, Grenoble, France,
§These authors contributed equally to this work

Funding:
This work was supported by grants from Assistance Publique—Hôpitaux de Paris [PHRC programme hospitalier de recherche clinique AOM05073].
Conflict of interest: none

*Corresponding author: Philippe Charron Tel: +33 1 42 16 13 47; fax: +33 1 42 16 13 64,
Email: philippe.charron@psl.aphp.fr
Address: AP-HP, Hôpital Pitié-Salpêtrière, Centre de référence pour les maladies cardiaques héréditaires, Paris, France

Word count: 5033
ABSTRACT

Background

Arrhythmogenic right ventricular Cardiomyopathy/Dysplasia (ARVC/D) is a genetic disease predominantly caused by desmosomal gene mutations that account for only ~50% of cases. *RYR2* gene mutations usually cause Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) but have been associated with peculiar phenotype named ARVC2.

Objectives

We aim to determine the prevalence and phenotype associated with *RYR2* mutations in a large ARVC/D population.

Methods

We analyzed the whole *RYR2* coding sequence by Sanger sequencing in 64 ARVC/D probands without desmosomal gene mutations.

Results

We have identified six rare missense variants p.P1583S, p.A2213S, p.G2367R, p.Y2932H, p.V3219M and p.L4670V. It corresponds to a prevalence of 9% of rare *RYR2* variants in ARVC/D population (6 probands/64) that is significantly higher than the estimated rate of rare *RYR2* variants in control (Fisher test, p=0.03). Phenotypes associated with *RYR2* variants were similar to desmosome-related ARVC/D, associating typical ECG abnormalities at rest, frequent monomorphic ventricular tachycardia, right ventricular dilatation, wall motion abnormalities and fibro-fatty replacement when histopathological examination was available.
Conclusion

In this first systematic screening of the whole coding region of the RYR2 gene in a large ARVC/D cohort without mutation in desmosomal genes, we show that putative RYR2 mutations are frequent (9% of ARVC/D probands) and are associated with a conventional phenotype of ARVC/D, in contrast with previous findings. The results support the role of RYR2 gene in conventional ARVC/D.

Keywords: Arrhythmogenic right ventricular dysplasia/cardiomyopathy; RYR2 gene; mutation

Abbreviations:
AA: amino acid
ARVC/D: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia
CPP : ethical committee (comité de protection des personnes)
CPVT: Catecholaminergic Polymorphic Ventricular Tachycardia
DNA: Deoxyribonucleic acid
ECG: electrocardiogram
EP: electrophysiologic study
EVS: Exome Variant Server database
LBBB: left bundle branch block
LV: left ventricle
MRI: Magnetic Resonance Imaging
NSVT: non-sustained ventricular tachycardia
RBBB: right bundle branch block
1 RV: right ventricle
2 RVOT: right ventricle outflow tract
3 RYR2: Ryanodine receptor type 2
4 SNP: single nucleotide polymorphism
5 SVT: sustained ventricular tachycardia
6 TFC: Task Force Criteria
7 TWI: T-wave inversion
8 Vec: ventricular ectopies
9 VT: ventricular tachycardia
10 WMA: wall motion abnormalities
11
INTRODUCTION

Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D) is a rare cardiac muscle disorder characterised by progressive fibro-fatty replacement of the myocardium. The right ventricle is predominantly affected but left ventricular involvement is also present in more than half of the cases. These structural alterations can lead to ventricular arrhythmias and heart failure. ARVC/D is a frequent cause of sudden death in young people and athletes.

The diagnosis of ARVC/D is currently based on the presence of major and minor standardised Task Force criteria (TFC) that consider ventricular arrhythmias episodes, electrocardiographic abnormalities, right ventricular function and morphology, histopathology, family history and genetic status.

ARVC/D is usually inherited as an autosomal dominant disease with reduced penetrance and variable expression. So far, the major genes involved in ARVC/D encode components of the cardiac desmosome: plakophilin-2 (PKP2), desmoglein-2 (DSG2), plakoglobin (JUP), desmoplakin (DSP) and desmocollin-2 (DSC2). Comprehensive mutation screening of the five main desmosomal ARVC/D genes can detect genetic abnormalities in at least 40-50% of probands. Non-desmosomal genes have been also associated with ARVC/D phenotypes including the cardiac ryanodine receptor type 2 gene (RYR2), the transforming growth factor beta 3 gene (TGFB3), the TMEM43 gene and more recently the lamin A/C (LMNA), the titin (TTN), the desmin (DES) and the phospholamban (PLN) genes. Mutations in the RYR2 gene are usually associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare and severe inherited arrhythmia without structural cardiac abnormality. RYR2 is one of the largest human genes (105 exons) encoding a mRNA of 16365 bp (NM_021991.2). Nava et al reported in 1988 a family with autosomal dominant form of right ventricular cardiomyopathy (supported by histological data) associated with polymorphic
ventricular tachycardia induced by exercise stress testing and juvenile sudden death20. Rampazzo et al mapped then the locus to chromosome 1q42-q43 and identified $RYR2$ mutations in four independent families with the same clinical presentation of ARVC/D (named ARVC/D2)11,21. This clinical presentation differs from desmosome-related forms of ARVC/D and is rather close to CPVT because of the presence of effort-induced ventricular arrhythmias, its high penetrance and a 1:1 sex ratio. The association between typical form of ARVC/D and $RYR2$ mutations remains unclear and the prevalence of $RYR2$ mutations in the ARVC/D population remains unknown since very few mutations have been associated to ARVC/D11,22-24.

In this study, we aimed to determine the prevalence of $RYR2$ mutations in a large cohort of 64 well clinically characterised ARVC/D probands for whom mutations in $PKP2$, $DSG2$, DSP, $DSC2$ and JUP were previously excluded. Sequencing of the entire coding region of $RYR2$ in these ARVC/D probands led to the identification of 6 putative missense mutations in 6 unrelated probands. The pathogenic role of the variations is discussed as well as the consequences for clinical practice.

METHODS

Patients

This multicenter prospective study included a cohort of unrelated probands recruited in France and Switzerland with a diagnosis of ARVC/D according to the TFC used at time of enrolment25 and then focussed on 64 probands for whom no mutation were identified in $PKP2$, $DSG2$, DSP, JUP and $DSC2$ genes10.

Clinical evaluation of all probands was performed as described previously10 and included: evaluation of personal and familial history, physical examination, 12-lead standard ECG, standard echocardiography, cardiac Magnetic Resonance Imaging (MRI) or right ventricular (RV) angiography, 24-hours ambulatory electrocardiogram (ECG) and signal-averaged-
Baseline exercise test was performed in all probands, except in very particular situations requiring urgent therapeutic management (such as implantable cardiac defibrillator or anti-arrhythmic drugs). Electrophysiologic (EP) study was performed when considered clinically relevant by the physician, according to the following protocol: 2 different sites, 2 rates, with up to 3 extra stimuli, at baseline and with infusion of isoproterenol. In the case of cardiac transplant, pathological analysis of the explanted heart was performed. Clinical evaluation of relatives was performed when available. This study was approved by the Pitié-Salpêtrière Hospital ethical committee (CPP) and written informed consent was obtained from all individuals.

Genetic analysis

For each proband, the 105 exons and intron-exon junctions of the RYR2 gene were amplified from genomic DNA (OMIM 180902, transcript: NM_021991.2, protein: 4967 AA, Q92736-1, primer sequences available upon request). The analysis of the entire coding sequence of RYR2 was performed by direct sequencing on an ABI 3130 DNA sequencer (PE Applied Biosystems®, Foster City, USA).

When unreported variant were detected, they were searched among 400 chromosomes from ethnically matched and healthy control subjects (Caucasian n=400 or Maghrebian n=134) by direct sequencing or by denaturing high-performance liquid chromatography (Wave Transgenomic Inc®, Cambridge, USA).

Upon identification, the likelihood of a pathogenic effect of an unreported RYR2 variant was based on (i) the absence of the variant in the control population and an allele frequency inferior to 1 / 10 000 in the databases NCBI SNPs, 1000 Genome and Exome Variant Server (http://www.ncbi.nlm.nih.gov/snp, http://browser.1000genomes.org/index.html, http://evs.gs.washington.edu/EVS), (ii) the conservation of the mutated residue among species and RYR isoforms and (iii) the predicted effect of the mutation by three appropriate software
(Polyphen2, SIFT, SNPsandGO http://genetics.bwh.harvard.edu/pph2/.
http://sift.bii.a-star.edu.sg/, http://snps-and-go.biocomp.unibio.it/snps-and-go/). The segregation analysis within the family was performed when the relatives DNAs and clinical data were available.

Statistical Analysis

The frequency of the “genetic background noise” of rare RYR2 missense variants in the general population was estimated using data from the Exome Variant Server database (EVS). By using the coverage data available in EVS website, we find that 25938 positions covering the RYR2 exons and introns boundaries had sufficient sequence coverage to be genotyped in 5818 individuals in average (99.9% of the coding sequence). We considered as a rare missense variant, each missense variant observed at maximum 5 times among the cohort of individuals genotyped in EVS.

The occurrence of these rare variations were added together and divided by the mean of allele population to reach a theoretical prevalence of rare variations in RYR2 in EVS, used as control population. The prevalence of rare RYR2 variations in our cohort (128 alleles or 64 patients) was then compared with the prevalence of RYR2 variations found in the population analysed in EVS (11636 alleles or 5818 individuals). We decided to pool both European and African ancestry for the comparison, first since our population of patients comprises both European and African ancestry and second because frequency of rare variants of RYR2 is similar in European population and in African population. P value was calculated with Fisher’s exact test. Calculations were carried out using the graphpad software: http://www.graphpad.com/quickcalcs/contingency1/.

RESULTS

Clinical data
All probands fulfilled TFC used at time of enrolment25 and four fulfilled recent update TFC2. Clinical data are summarised in the tables 1 and S1. Pedigrees are presented in figure 1.

\textbf{Family A.}

The proband was a man presenting with aborted sudden cardiac death during intense effort, with ventricular fibrillation. Resting ECG showed in V1 an atypical conduction defect (figure 2) and signal-averaged ECG detected late potentials. Cardiac imaging showed RV dilatation and multifocal wall-motion-abnormalities (WMA) with mild left ventricle (LV) abnormalities (table 1). He was found to carry a heterozygous \textit{RYR2} p.P1583S variant. The familial screening detected the variation in the affected father and a sister presenting with borderline phenotype while the three healthy relatives did not carry the variation. The father displayed frequent bimorphic ventricular ectopies and significant RV abnormalities on cardiac imaging. He also developed persistent atrial fibrillation needing cardioversion. The 17 year-old sister displayed a parietal block in V1 (figure 2) and mild RV abnormalities. Exercise test, EP study or isoproterenol test did not induced significant arrhythmia in the proband and his father.

\textbf{Family B.}

The proband was an asymptomatic 43-year-old man. He fulfilled diagnosis criteria for ARVC/D with the presence of T-wave inversion (TWI) from V1 to V4, non-sustained monomorphic ventricular tachycardia (NSVT) recording during the 24-hour 3D-ECG monitoring, frequent ventricular ectopies with left bundle branch block (LBBB) morphology and superior axis and late potentials (figure 2 and 3). He displayed a mild RV dilatation with global RV hypokinesia on cardiac-MRI. Electrophysiological mapping of the right ventricle showed a limited zone of scar within the inferior wall of the RV and the EP study triggered a monomorphic sustained ventricular tachycardia (SVT) with LBBB morphology and superior axis, suggesting ventricular tachycardia (VT) originating from this scar (figure 3). The molecular analysis of \textit{RYR2} found a p.L4670V heterozygous variation, also found in his
affected sister and his asymptomatic mother (figure 2). His sister displayed TWI from V1 to V3 without evidence of morphological abnormalities or ventricular arrhythmias (figure 2, table 1 and Supplementary table 1) while their mother only displayed positive late-potentials.

Family C.

This 59 years old male proband was a sporadic case that presented with presyncope and spontaneous ventricular arrhythmia, corresponding to monomorphic NSVT with a LBBB morphology and inferior axis. ECG showed complete right bundle branch block (RBBB). Echocardiography and cardiac MRI showed apical and RVOT dyskinesia although the RV was not significantly enlarged. He did not reach the 2010 diagnosis criteria and was then considered with a borderline diagnosis of ARVC/D. The EP study and the isoproterenol test were negative under beta-blockers. The RYR2 p.G2367R heterozygous variation was identified. No DNA from relatives was available.

Family D.

The proband was a sporadic case that presented with palpitations and several episodes of syncope since the age of 35. ECG showed TWI from V1 to V3 and late potentials (figure 2). He displayed spontaneous monomorphic sustained ventricular tachycardia of LBBB morphology. Cardiac imaging showed RV dilatation and dysfunction associated with apical and infero-basal WMA. Monomorphic NSVT with LBBB morphology and superior axis was triggered at EP study but not at exercise test and during isoproterenol test (figure 3). The p.A2213S heterozygous variation was identified in RYR2. One of the unaffected daughters, 12 years of age, carried the variation.

Family E.

Proband was a sporadic case that presented with presyncope at the age of 41. Resting ECG showed TWI from V1 to V3. The 24h-ECG monitoring detected frequent monomorphic ventricular ectopies (Vec) (figure 2, table S1) decreasing during exercising. Cardiac imaging
showed WMA with dyskinesia and RV aneurysm but no RV dilatation and therefore did not reach the 2010 diagnostic criteria. The heterozygous p.V3219M variation in RYR2 was identified.

Family F.

Proband, a 39 years old woman, presented with palpitations and dyspnea. ECG showed epsilon wave, first-degree atrio-ventricular block, incomplete RBBB. She developed atrial fibrillation (figure 2). A 24h ECG monitoring and exercise test detected frequent polymorphic ventricular ectopies, increasing with effort (figure2, table S1). The EP study induced a syncopal polymorphic SVT. She developed a major RV dilatation with severe tricuspid regurgitation leading to end-stage heart failure that required heart transplantation. The anatomopathological study of the explanted heart confirmed typical histological features of ARVC/D with an extensive fibro-fatty replacement of the entire RV anterior wall associated with lymphocytes infiltration and important areas of fibro-fatty replacement within the LV wall (figure 4). A heterozygous p.Y2932H variation in RYR2 was identified. Familial screening detected the variation in two asymptomatic siblings.

None of the six probands presented with bidirectional VT. Mutation carriers did not show NSVT nor SVT during exercise test (performed in three probands and two relatives) or during isoproterenol test (performed in four probands and one relative).

Genetic analysis

RYR2 is reported to be a relatively polymorphic gene by Jabbari et al. We decided therefore to analyse whether the prevalence of RYR2 variant in our cohort was higher or not than in the
general population. We estimated the prevalence of the genetic background noise of \textit{RYR2} variants in the general population using the data from the Exome Variant Server. We considered as a rare \textit{RYR2} variant a variant observed at maximum 5 times in EVS, which is a conservative approach. We observed that a rare \textit{RYR2} variant was identified in 215/5818 subjects in EVS (supplementary table 2). It corresponded to a rate of rare \textit{RYR2} variants of 4% (215/5818) in EVS which was significantly lower to the 9% (6/64) observed in our cohort (Fisher test, \(p=0.0322\)).

The p.P1583S variation is located in the cytoplasmic part of the protein, outside the hot spot of mutations of \textit{RYR2}. The proline residue at position 1583 is highly conserved among species and isoforms of \textit{RYR} (figure 5). The variation was predicted to be deleterious by all prediction software (table 2), and was absent among 400 control chromosomes and from the EVS and 1000 genome databases.

The p.G2367R was located in the cytoplasmic part of the protein in the second hot spot domain of \textit{RYR2} (central domain), close to the region of interaction with FKBP12.6, a major regulatory protein of \textit{RYR2}. Moreover, this variant has been previously reported in association with hypertrophic cardiomyopathy and unexplained sudden cardiac death and functional studies showed a gain of function27,28. This variation was not found in 400 control chromosomes.

The p.L4670V variation mapped to the transmembrane domain of the protein that participates to the pore of the calcium channel. This domain is a hot spot for \textit{RYR2} mutations, with more than 30 mutations published, all associated so far with CPVT or sudden death. Moreover, a p.L4670H variation has been recently reported in association with CPVT26. The variation affected a highly conserved leucine residue (figure 5), was predicted as deleterious by all
prediction softwares (table 2) and was found neither in 400 control chromosomes, nor in the
variant databases.

The p.A2213S, p.Y2932H, p.V3219M variations were located outside the hot spot of
mutations of RYR2, and modified a not conserved amino acid. They were absent from 400
control chromosomes but the p.V3219M variant was reported with a very low frequency
(<0.0001%) from Exome Variant Server database.

DISCUSSION

Pathogenicity of RYR2 variants in ARVC/D

We performed the first systematic screening of the whole RYR2 gene (105 exons and intron-
exon junctions) in a well clinically characterized ARVC/D cohort, after the exclusion of
affected subjects harboring pathological mutations in either of the five desmosomal genes
(PKP2, DSG2, DSP, JUP, DSC2). Among the 64 ARVC/D probands, we found a prevalence
of rare RYR2 variants of 9%. Based on a conservative approach including the estimation of a
“genetic background noise” of 4% in RYR2, we found a significantly higher frequency of
RYR2 variants in our ARVC/D cohort.

In the absence of functional studies, it remains difficult to classify any missense mutation as
benign or pathogenic. Therefore, interpretation of our results was performed with
considerable caution. We postulate that some of the new variants identified in our study are
deleterious, either as a monogenic dominant mutation or through a modifier effect, while we
cannot exclude the hypothesis that some variants may be very rare benign polymorphisms.
The two variants, p.P1583S and p.L4670V were considered as highly probably pathogenic
based on the conservation of the amino acid concerned, the absence of a large control
population and the damaging effect predicted in silico. The familial studies showed that the
variants segregate with the phenotype but with reduced penetrance. The pathogenic effect of p.A2213S, p.G2367R, p.Y2932H, p.V3219M was more difficult to ascertain. *In silico* analyses suggest that these variants are possible benign polymorphisms or modifying variants rather than direct disease-causing mutations.

Noticeably, we identified the presence of the two RYR2 SNPs (p.G1885E and p.G1886S) in a compound heterozygous manner in one additional proband, which were previously reported to be associated with ARVC/D (data not shown)\(^24\). However, we also identified this association in a healthy control subject supporting a possible modifier effect of these variants rather than a causal role.

The RYR2 mutations identified so far in ARVC/D were located in the cytoplasmic region of the channel\(^{11,22,23}\). Similarly, all the genetic variants we identified were also located in the cytoplasmic part of the protein, except the p.L4670V variant, which is located into the transmembrane domain, a hot spot of RYR2 mutations associated with CPVT phenotypes\(^29\).

We therefore believe that the molecular analyse of RYR2 in ARVC/D requires the screening of the entire coding region of the gene.

Phenotype/genotype analysis

Until now, only few studies reported RYR2 mutations associated with ARVC/D\(^{11,22,23}\) (ARVC2 locus). In those families, the phenotype linked to RYR2 mutations appeared different from desmosome-related ARVC/D and presented overlapped characteristics with CPVT\(^11\).

Interestingly, in the present study, the phenotype associated with RYR2 variants is similar to desmosome-related ARVC/D. Most probands fulfilled ARVC/D diagnosis based on recent update TFC\(^{25}\). They exhibited frequent TWI or parietal block on right precordial leads, which are common ARVC/D features absent from the CPVT and the ARVC2 phenotype. All probands displayed ventricular arrhythmias that were predominantly monomorphic with a LBBB morphology, which is a usual feature of ARVC/D, in opposite to the polymorphic
arrhythmias encountered in CPVT or ARVC2. Ventricular effort-induced polymorphic
ventricular arrhythmias are an important diagnosis feature of ARVC2 and CPVT19,21, however
this feature was rarely present in our \textit{RYR2}-related ARVC/D cohort (supplementary table 1).
The p.P1583S carriers exhibited a phenotype closer to ARVC2 with effort-induced ventricular
fibrillation and polymorphic VEc associated with significant RV abnormalities and few
baseline ECG abnormalities. All patients displayed right ventricular cardiomyopathy with
either RV dilatation and/or WMA usually encountered in ARVC/D. The endocardial mapping
of the proband carrying the putative p.L4670V mutation showed a zone of scar tissue within
the inferior RV wall. One proband developed a severe biventricular cardiomyopathy leading
to heart transplant. The explanted heart showed typical histological features of ARVC/D with
extensive fibro-fatty replacement of myocytes.

\textbf{Role of \textit{RYR2} variants in ARVC/D physiopathology}

The Ca2+ release channel \textit{RYR2} plays a central role in cardiac excitation-contraction
coupling30. During the systole, \textit{RYR2} massively releases Ca2+ from the sarcoplasmic reticulum
(SR) towards the cytoplasm leading to the cardiac contraction. Recently, a mutation affecting
the phospholamban (\textit{PLN} gene), another protein playing a central role in calcium regulation,
has been described in an ARVC/D and DCM (dilated cardiomyopathy) population17.

Even if the PLN phenotype is possibly particular or overlapping, this observation might
suggest a potential link between [Ca2+] dysregulation and arrhythmogenic cardiomyopathies.
It could be hypothesised that modifications of intracellular calcium homeostasis induced by
\textit{RYR2} mutations might alter signaling pathways dependent of intracellular Ca2+ homeostasis,
and participate to the pathogenesis of ARVC/D. However, this hypothesis requires further
investigations.

\textbf{Limits}
A limit of this study is the absence of definitive demonstration for the pathogenicity of the \textit{RYR2} variants, because of inconclusive segregation analyses and no available functional studies. However, one of the variants was previously reported to cause a gain of function 27,28. Moreover, the small size of families is quite usual in ARVC/D because of reduced penetrance and therefore few affected relatives in a family. In addition we performed a careful and conservative interpretation of the variants.

Another limit concerns the comparison of the rate of \textit{RYR2} variants in our cohort and in EVS cohort while two different methods of sequencing were used, which performance may differ (error rate, coverage). However, their efficiency in term of error rate seems to be similar31 and the coverage of the coding sequence of \textit{RYR2} in EVS was excellent (99.9%). We are therefore confident with the true difference of \textit{RYR2} variants in patients and controls, although the analysis of a larger cohort of patients with NGS could strengthen our findings.

At last, the ARVC/D probands were selected according to the 1994 Task Force Criteria as this cohort was prospectively recruited before the publication of the revised TFC.

\textbf{CONCLUSION}

We performed the first systematic screening of the whole \textit{RYR2} gene in a well clinically characterized ARVC/D cohort, after the exclusion of patients with pathological mutations in five desmosomal genes, and identified putative \textit{RYR2} mutations in 9\% of ARVC/D probands. Furthermore, we observed that \textit{RYR2} variants were associated with ARVC/D not overlapping with CPVT phenotype. This observation suggests that \textit{RYR2} variants play a role in the genetic basis of conventional ARVC/D either as disease-causing mutation, or a modifier gene. This study also support the notion that in case of a missense variant identified in \textit{RYR2} in ARVC/D patient, it is necessary to be particularly cautious in the interpretation of the pathogenicity of the variant. The screening of multiple genes, including \textit{RYR2}, in ARVC/D populations in
association with careful phenotype/genotype correlations and functional studies will help to better understand the complex genetic background of this disease.

ACKNOWLEDGMENTS

The study would not have been possible without the invaluable assistance of the patients. This work was supported by grants from Assistance Publique—Hôpitaux de Paris [PHRC programme hospitalier de recherche clinique AOM05073]. We thank Dr P. Ray for proofreading the manuscript and Dr J. Brocard for statistical analyses.
REFERENCES

ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic

18 Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine receptor
(RyR2) gene in familial polymorphic ventricular tachycardia. *Circulation* 2001; 103:
485-490.

19 Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V,
Danieli GA. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie
catecholaminergic polymorphic ventricular tachycardia. *Circulation* 2001; 103: 196-
200.

20 Nava A, Canciani B, Daliento L, Miraglia G, Buja G, Fasoli G, Martini B,
Scognamiglio R, Thiene G. Juvenile sudden death and effort ventricular tachycardias

Danieli GA. A new locus for arrhythmogenic right ventricular cardiomyopathy

22 Bauce B, Rampazzo A, Basso C, Bagattin A, Daliento L, Tiso N, Turrini P, Thiene G,
Danieli GA, Nava A. Screening for ryanodine receptor type 2 mutations in families
with effort-induced polymorphic ventricular arrhythmias and sudden death: early

polymorphic ventricular arrhythmias caused by a novel RyR2 gene mutation: evidence

Thieleczek R, Varsanyi M. Composite polymorphisms in the ryanodine receptor 2

32 Du GG, Sandhu B, Khanna VK, Guo XH, MacLennan DH. Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1). *Proc Natl Acad Sci USA* 2002; 99: 16725-16730.
CLINICAL PERSPECTIVES

To our knowledge, we report here the first systematic screening of the whole RYR2 gene in a large ARVC/D cohort without mutation in desmosomal genes. We identified six rare RYR2 missense variants predominantly associated with a conventional phenotype of ARVC/D. Using the data from the Exome Variant Server database, we estimated the prevalence of rare RYR2 variants to 4% in the general population, which was significantly lower to the 9% observed in our cohort (Fisher test, p=0.0322). The results support the role of RYR2 gene in conventional ARVC/D. This study also highlights the fact that in case of a missense variant identified in RYR2 in ARVC/D patient, it is necessary to be particularly cautious in the interpretation of the pathogenicity of the variant given the prevalence of rare RYR2 variants in the general population. The screening of multiple genes, including RYR2, in ARVC/D populations in association with careful phenotype/genotype correlations and functional studies will help to better understand the complex genetic background of this disease and to improve the management of ARVC/D patients in the future.
FIGURE LEGENDS

Figure 1. Family pedigrees of the patients with a RYR2 variant.
Square: male, circle: women, white: unaffected individuals after clinical examination or with no known disease, black: affected, grey: borderline (TFC 2010). +/-: heterozygous individuals, -/-: individuals negative. NA: genetic status not available. aSCD: aborted sudden cardiac death.

Figure 2. Electrocardiographic characteristics of RYR2 variants carriers
Proband II:1, family A displayed an unusual intraventricular conduction defect in lead V1 (arrow). Proband II:1 and his sister II:2 from family B and probands from family D and E displayed T-wave inversion in precordial leads V1 to V3. Proband from family F displays an iRBBB and epsilon wave in V1 (arrow) and multifocal wide Vec with LBBB morphology.

Figure 3. Electrophysiological data.
Proband II:1, family B developed spontaneous monomorphic NSVT recorded during the 24-hours ECG monitoring. The electrophysiological study triggered a SVT with LBBB morphology and superior axis (left), close to the spontaneous ventricular ectopies morphology (right). EP study performed on proband II:4, family D triggered NSVT with LBBB morphology.

Figure 4. Histological data.
Histological characterisation of the proband from family F. The figure showed typical fibrofatty replacement in the right ventricle anterior wall of explanted heart (haematoxylin and eosin staining, x20 and x100 magnification)
Figure 5. Location and conservation of the RYR2 variants identified.

(A) Location: all missense variants are located within the intra-cytoplasmic part or the protein, at the exception of the p.L4670V, which is located within the trans-membranous part of the protein. (B) The conservation of the mutated residues 1583 and 4670 indicate that they are highly conserved across human isoforms and species.
Table 1. Clinical characteristics of probands RYR2 mutation carriers.

<table>
<thead>
<tr>
<th>Family</th>
<th>Patient</th>
<th>Mutation</th>
<th>Age</th>
<th>Familial status</th>
<th>Origin</th>
<th>Symptoms</th>
<th>Familial history</th>
<th>Arrhythmia degree relative</th>
<th>Ventricular arrhythmia</th>
<th>RV abnormaties</th>
<th>LV abnormaties</th>
<th>ECG</th>
<th>SAEG</th>
<th>Histology</th>
<th>Treatment</th>
<th>Clinical status according to the 2010 Task Force Diagnosis Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>II:1</td>
<td>p.P1583S</td>
<td>22</td>
<td>none</td>
<td>Europe</td>
<td>Aborted SCD</td>
<td>none</td>
<td>no</td>
<td>Yes*</td>
<td>Dilated RV, apical trabeculations, infero-lateral dyskinesia and akinesia of antero lateral RVOT (echo, MRI, angiography)**</td>
<td>Mild LV dilatation and infero-basal hypokinesia</td>
<td>Intraventricular conduction defect in V1</td>
<td>3/3*</td>
<td>NA</td>
<td>BB, ACEi, ICD</td>
<td>Affected</td>
</tr>
<tr>
<td>A</td>
<td>II:3</td>
<td>p.P1583S</td>
<td>17</td>
<td>Yes</td>
<td>Europe</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>None</td>
<td>Mild RV dilatation on echocardiography with lowered R wave terminal > 55ms in V1* and dyssynchronous RV contraction with apico-lateral hypokinesia on cardiac-MRI (echo/MRI)</td>
<td>none</td>
<td>Terminal QRS duration > 55ms in V1*</td>
<td>0/3</td>
<td>NA</td>
<td>none</td>
<td>Borderline</td>
</tr>
<tr>
<td>I</td>
<td>I:1</td>
<td>p.P1583S</td>
<td>60</td>
<td>none</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>RV apical akinesia associated with RV enlargement (RVOT measured at 34 mms PSAX view) (echo, angiography)*</td>
<td>LVEF = 55%</td>
<td>AF, Terminal QRS duration > 55ms in V1*</td>
<td>0/3</td>
<td>NA</td>
<td>BB</td>
<td>Affected</td>
</tr>
<tr>
<td>B</td>
<td>II:1</td>
<td>p.L4670V</td>
<td>43</td>
<td>none</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>Mild RV dilatation (RV end-diastolic volume = 109 ml/m²) and global hypokinesia</td>
<td>none</td>
<td>None</td>
<td>1/3*</td>
<td>NA</td>
<td>BB</td>
<td>Affected</td>
</tr>
<tr>
<td>B</td>
<td>II:2</td>
<td>p.L4670V</td>
<td>41</td>
<td>Yes</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>None (echo,MRI, scintigraphy)</td>
<td>TWI V1-3**</td>
<td>none</td>
<td>0/3</td>
<td>NA</td>
<td>none</td>
<td>Affected</td>
</tr>
<tr>
<td>B</td>
<td>I:2</td>
<td>p.L4670V</td>
<td>70</td>
<td>Yes</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>None (echo, MRI, scintigraphy)</td>
<td>TWI V1-3**</td>
<td>Normal</td>
<td>2/3*</td>
<td>NA</td>
<td>none</td>
<td>borderline</td>
</tr>
<tr>
<td>C</td>
<td>II:3</td>
<td>p.G2367R</td>
<td>59</td>
<td>none</td>
<td>North Africa</td>
<td>Presyncope</td>
<td>none</td>
<td>no</td>
<td>None</td>
<td>WMA with apical and RVOT akinesia, RV LGE* (echo, MRI, scintigraphy)</td>
<td>none</td>
<td>RBBB; QRS V1>60; 25ms</td>
<td>3/3</td>
<td>NA</td>
<td>BB, amiodarone, ACEi, ICD</td>
<td>Borderline</td>
</tr>
<tr>
<td>D</td>
<td>II:4</td>
<td>p.A2213S</td>
<td>35</td>
<td>none</td>
<td>Europe</td>
<td>Palpitations syncope</td>
<td>none</td>
<td>no</td>
<td>None</td>
<td>RV dysfunction (RV FAC : 26 %), apical akinesia and infero-basal hypokinesia, RV LGE** (echo, MRI)</td>
<td>LVEF = 55%</td>
<td>TWI V1-3**</td>
<td>1/3*</td>
<td>NA</td>
<td>BB, ICD</td>
<td>Affected</td>
</tr>
<tr>
<td>D</td>
<td>III:1</td>
<td>p.A2213S</td>
<td>12</td>
<td>Yes</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>WMA with dyskinesia and RV aneurysm (echo, MRI)</td>
<td>none</td>
<td>None</td>
<td>0/3</td>
<td>NA</td>
<td>none</td>
<td>Unaffected</td>
</tr>
<tr>
<td>E</td>
<td>II:2</td>
<td>p.V3219M</td>
<td>41</td>
<td>none</td>
<td>Europe</td>
<td>Presyncope</td>
<td>none</td>
<td>no</td>
<td>None</td>
<td>WMA with dyskinesia and RV aneurysm (echo, MRI)</td>
<td>none</td>
<td>TWI V1-3**</td>
<td>0/3</td>
<td>NA</td>
<td>BB</td>
<td>borderline</td>
</tr>
<tr>
<td>F</td>
<td>II:4</td>
<td>p.Y2932H</td>
<td>39</td>
<td>none</td>
<td>Europe</td>
<td>Palpitations dyspnea</td>
<td>none</td>
<td>no</td>
<td>None</td>
<td>Major RV dilatation, antero akinesia, antero-severe hypokinesia, trabeculations (echo, angiography)**</td>
<td>LVEF = 45%</td>
<td>Epsilon wave, incomplete RBBB, AF**</td>
<td>0/3</td>
<td>NA</td>
<td>Amdiarone, BB, ACEi, ICD, Heart Tx</td>
<td>Affected</td>
</tr>
<tr>
<td>F</td>
<td>II:3</td>
<td>p.Y2932H</td>
<td>41</td>
<td>None</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>None (echo)</td>
<td>none</td>
<td>0/3</td>
<td>NA</td>
<td>none</td>
<td>Unaffected</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>II:2</td>
<td>p.Y2932H</td>
<td>42</td>
<td>None</td>
<td>Europe</td>
<td>none</td>
<td>None</td>
<td>none</td>
<td>None</td>
<td>None (echo)</td>
<td>none</td>
<td>0/3</td>
<td>NA</td>
<td>none</td>
<td>Unaffected</td>
<td></td>
</tr>
</tbody>
</table>

ACEI: angiotensin conversion enzyme inhibitor; AF: atrial fibrillation; BB: beta-blockers; Echo: echocardiography; EF: ejection fraction; FAC: fractional area change; Heart Tx: heart transplantation; ICD: implantable cardiac defibrillator; LGE: presence of late-gadolinium enhancement; LV: left ventricle; NA: non-available data; Pb: proband (all fulfilled 1994 diagnostic criteria available at enrolment); PSAX: para-sternal short axis; R: relative; RV: right ventricle; RBBB: right bundle branch block; SCD: sudden cardiac death; SAEG: signal average ECG; RVOT: right ventricle outflow tract; TWI: T-wave inversion; WMA: wall motion abnormalities; *: minor or criteria according to the 2010 Task Force Diagnosis Criteria (TFDC); **: major criteria; †: fibrofatty replacement.
Table 2: Predicted alterations of nonsynonymous changes observed.

<table>
<thead>
<tr>
<th>Exon</th>
<th>Mutation</th>
<th>Location</th>
<th>Conservation</th>
<th>Prediction from bioinformatic tools</th>
<th>Frequency in variant database*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIFT</td>
<td>Polyphen2</td>
</tr>
<tr>
<td>36</td>
<td>c.4747C>T p.P1583S</td>
<td>Cytoplasmic</td>
<td>yes</td>
<td>Intolerant</td>
<td>Probably damaging</td>
</tr>
<tr>
<td>43</td>
<td>c.6637G>T p.A2213S</td>
<td>Cytoplasmic</td>
<td>no</td>
<td>Intolerant</td>
<td>Possibly damaging</td>
</tr>
<tr>
<td>46</td>
<td>c.7099G>A p.G2368R</td>
<td>Cytoplasmic</td>
<td>no</td>
<td>Tolerant</td>
<td>Possibly damaging</td>
</tr>
<tr>
<td>60</td>
<td>c.8794T>C p.Y2932H</td>
<td>Cytoplasmic</td>
<td>no</td>
<td>Tolerant</td>
<td>Probably damaging</td>
</tr>
<tr>
<td>68</td>
<td>c.9655G>A p.V3219M</td>
<td>Cytoplasmic</td>
<td>no</td>
<td>Tolerant</td>
<td>Possibly damaging</td>
</tr>
<tr>
<td>97</td>
<td>c.14008C>G p.L4670V</td>
<td>Transmembrane domain</td>
<td>yes</td>
<td>Intolerant</td>
<td>Probably damaging</td>
</tr>
</tbody>
</table>

*Including NCBI, EVS (exome variant server) and 1000 genomes databases
Histological characterisation of the proband (patient II:4), fam F.
Figure 5

A.

B.

RyR2 Human	EHKNPVPCFRPLHVQ	ISELLGMDDKAA
RyR1 Human	EFKNPAPCPFPPLEHQC	IAELLGDMDLAT
RyR3 Human	EKKNPVPCCFRPLDVQ	IAELLGLDKNA
RyR2 Rabbit	EHKNPVPCFRPLHVQ	ISELLGMDDKAA
RyR1 Pig	EFKNPAPCPFPPLEHQ	IAELLGDMDLAT
RyR3 Chicken	EERNPVPCFRPLDVQ	IAELLGLDKNA
RyR Drosophila	SDKINPQSPPLKVQ	ISNILLGMEKST
RyR1 C.elegans	CEKSLVPPCFPRLTVF	LTSILLGEEKMS
Supplementary Material2
Click here to download Supplementary Material: supplementary_table2.doc